Patents Represented by Attorney William B. Batzer
  • Patent number: 6640625
    Abstract: Apparatus for determining the density of a fluid downhole includes apparatus for measuring compressibility of the fluid and apparatus for determining the speed of sound through the fluid. According to the methods of the invention, density of the fluid is calculated based upon the relationship between density, compressibility, and the speed of sound through the fluid.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: November 4, 2003
    Inventor: Anthony R. H. Goodwin
  • Patent number: 6640190
    Abstract: A method of processing first and second sets of data signals obtained through remotely sensing properties of the same subsurface area at different times comprising the steps of decomposing said first and second data sets into subvolumes of samples and generating subsidence estimates indicating the amount and direction the samples from said first data set need to be translated to obtain a new representation of said first data subvolume that maximally resembles said second subvolume. Preferably, the method further includes the step of derivating said subsidence estimates along the vertical direction in order to generate samples indicating the relative local compaction of the subsurface.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: October 28, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Michael Nickel
  • Patent number: 6631327
    Abstract: A tool generates signals indicative of shear wave slowness of the formation surrounding a borehole. The tool comprises a collar portion adapted for mounting in a drill string, a quadrupole sonic transmitter mounted to the collar portion, and a quadrupole sonic receiver array mounted to the collar spaced apart from the transmitter. A method determines shear wave slowness of the formation. The method includes propagating quadrupole wave energy into the formation and detecting quadrupole dispersive waveforms received at a second location.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 7, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Chaur-Jian Hsu, Jahir A. Pabon, Bikash A. Sinha
  • Patent number: 6625541
    Abstract: Methods for downhole waveform tracking and sonic labeling employ “tracking algorithms” and Bayesian analysis to classify STC waveforms. More particularly, according to the tracking part of the invention, a probability model is built to distinguish true “arrivals” (e.g. compressional, shear, etc.) from “false alarms” (e.g. noise) before the arrivals are classified. The probability model maps the “continuity” of tracks (slowness/time over depth) and is used to determine whether sequences of measurements are sufficiently “continuous” to be classified as tracks. The probability model is used to evaluate the likelihood of the data in various possible classifications (hypotheses). Prior and posterior probabilities are constructed for each track using the tracking algorithm. The posterior probabilities are computed sequentially and recursively, updating the probabilities after each measurement frame at depth k is acquired.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: September 23, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Ramachandra Ganesh Shenoy, Henri-Pierre Valero
  • Patent number: 6612171
    Abstract: A gravity measuring apparatus is provided comprising a gravitational force detector including a test mass and which produces measurements related to gravitational force exerted on the test mass, characterized in that the gravitational force detector is adapted for use downhole and includes a compensator to compensate for errors in measurements made whilst downhole. The compensator may comprise a guide rail along which the gravitational force detector is moveable over a calibrated distance. Where the test mass is biased toward an equilibrium position about which measurements are made.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 2, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Kenneth E. Stephenson, Robert L. Kleinberg, Douglas D. Griffin
  • Patent number: 6614716
    Abstract: A method for determining properties of an earth formation surrounding an earth borehole that involves: providing a logging device moveable through the borehole; transmitting sonic energy into the formation; receiving sonic energy that has traveled through the formation; producing signals representative of the received sonic energy; determining whether the formation is anisotropic; determining whether the formation is inhomogeneous; and outputting a characterization of the formation as one of the following types: isotropic/homogeneous, anisotropic/homogeneous, isotropic/inhomogeneous, and anisotropic/inhomogeneous.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: September 2, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Thomas Plona, Bikash K. Sinha, Michael Kane, Ramachandra Ganesh Shenoy, Sandip Bose
  • Patent number: 6611761
    Abstract: A method for determining a radial profile of sonic shear velocity of formations surrounding a fluid-containing borehole, including: suspending a logging device in the borehole; transmitting sonic energy from the logging device to establish flexural waves in the formation; receiving sonic energy from the flexural waves and producing, from the received sonic energy, measurement signals at a number of frequencies; determining, at each frequency, the flexural wave velocity in the formation; deriving sonic compressional and shear velocities of the substantially undisturbed formation; deriving sonic compressional velocity of the borehole fluid; and determining the radial profile of sonic shear velocity from the derived compressional and shear velocities of the substantially undisturbed formation, the derived compressional velocity of the borehole fluid, and the flexural wave velocities.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: August 26, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Bikash K. Sinha, Robert Burridge, Michael R. Kane
  • Patent number: 6597171
    Abstract: Nuclear magnetic resonance methods for extracting information about a fluid in a rock are described. A system of nuclear spins in the fluid are prepared in a driven equilibrium, and a series of magnetic resonance signals generated from the fluid. The series of magnetic resonance signals is detected and analyzed to extract information about the fluid in the rock.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: July 22, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin D. Hurlimann, Olivier J. Terneaud, Denise Freed, Ulrich Scheven, Lalitha Venkataramanan
  • Patent number: 6593770
    Abstract: The disclosure describes a system and method for dynamically matching a source impedance to a load impedance or the complex conjugate of the load impedance. An embodiment of the present invention is a device for active impedance matching comprising a current driver having an output connected to a load, means for detecting an output voltage from the current driver to the load, means for scaling the detected output voltage by a scaling value, and means for subtracting a value representing the scaled detected output current from an input signal of the voltage driver.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: July 15, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Ramon Hernandez-Marti
  • Patent number: 6590647
    Abstract: A method of and apparatus for determining a physical property of a material. The method includes: attaching nanoparticles to a substrate; positioning the substrate near the material; illuminating the nanoparticles with photons having wavelengths that stimulate surface enhanced Raman emissions; detecting photons emitted as a result of the illumination; and determining said physical property of said material using said detected photons. The apparatus includes: a substrate; nanoparticles attached to the substrate; a light source, connected to the substrate, for illuminating the nanoparticles with photons having wavelengths that stimulate surface enhanced Raman emissions; a photodetector, connected to the substrate, for detecting photons emitted as a result of illumination of the nanoparticles; and a processor, connected to the photodetector, for determining a property of material near the nanoparticles from the detected photons.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: July 8, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Kenneth E. Stephenson
  • Patent number: 6580272
    Abstract: Nuclear magnetic resonance logging methods that detect and analyze a steady state free precession (SSFP) signal are described. In some embodiments, Carr-Purcell-Meiboom-Gill (CPMG) spin echoes are detected along with the SSFP signals. From the SSFP signal, either alone or in combination with CPMG signals, information about a region of an earth formation, such as porosity, bound fluid volume and diffusion, may be extracted.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: June 17, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Denise Freed, Martin D. Hürlimann, Ulrich Scheven
  • Patent number: 6578405
    Abstract: A method of detecting a marine gas seep that includes: deploying a local probe on or near the seafloor; producing bubbles in water near or within the local probe; detecting the bubbles; producing data indicating the relative concentration of dissolved gas in the water; and associating elevated dissolved gas concentrations with the presence of a nearby marine gas seep. Another aspect of the invention involves an apparatus configured to carry out the inventive method. Preferred embodiments of the invention utilize an ultrasonic transducer to both produce bubbles and detect them.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: June 17, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Robert L. Kleinberg, Neil W. Bostrom, Douglas D. Griffin, Peter G. Brewer
  • Patent number: 6575043
    Abstract: Methods and apparatus are described that characterize flows within a conduit by generating acoustic waves, and receiving acoustic energy representing at least one in-wall leaky acoustic wave mode. Attenuation of acoustic energy that has entirely propagated within the wall of the conduit is measured and evaluated in order to derive parameters relating to the fluid or fluids flowing in the conduit. The wave modes described include bulk waves and lamb waves and propagate in axial and circumferential directions.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: June 10, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Songming Huang, Yan Kuhn de Chizelle
  • Patent number: 6571619
    Abstract: A subsurface formation petrophysical evaluation method including: determining formation porosity and permeability using a quantitative indication of formation composition; estimating water-filled formation resistivity using the formation porosity; associating differences between measured formation resistivity and estimated water saturated formation resistivity with the presence of subsurface hydrocarbons; and estimating irreducible formation water saturation using the formation porosity and the formation permeability. The invention further involves an apparatus adapted to carry out the inventive method.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: June 3, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Michael M. Herron, Susan L. Herron
  • Patent number: 6568486
    Abstract: A method and apparatus are provided for detecting a received acoustic pulse of a selected azimuthal borehole mode in a liquid-containing borehole in a formation. The method uses a sonde having an axial array of acoustic receiver stations aligned with the borehole, each receiver station having an azimuthal array of at least four piezoelectric receiver elements, the receiver elements uniformly spaced apart around the azimuthal array. An acoustic pulse transmitted within the borehole produces an electrical signal at each receiver element. Azimuthal spatial transform filtering is applied to produce data representing a received acoustic pulse of the selected azimuthal borehole mode. In one embodiment, azimuthal spatial DFT filtering is applied to digital data produced by analog to digital conversion. In another embodiment, cosine transform filtering is applied by an apodized receiver element.
    Type: Grant
    Filed: September 6, 2000
    Date of Patent: May 27, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Wallace R. A. George
  • Patent number: 6570382
    Abstract: NMR methods for extracting information about a fluid in rock and logging apparatuses for implementing such methods in a borehole environment are provided. The methods involve generating at least two different magnetic field pulse sequences. The magnetic field pulse sequences include a first portion and a second portion. A magnetic field pulse sequence is generated, and magnetic resonance signals are detected using the second portion of the sequence. The first portion of the sequence is modified, and again the sequence generated and magnetic resonance signals detected using the second portion. The magnetic resonance signals are analyzed, and information about, for example, diffusion coefficient, viscosity, composition, saturation in a rock, pore size, pore geometry and the like, extracted from the analyzed signals.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 27, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Martin D. Hurlimann, Charles Flaum, Mark Flaum, Lalitha Venkataramanan
  • Patent number: 6563314
    Abstract: A method for determining the nuclear magnetic resonance longitudinal magnetization decay of formations surrounding an earth borehole that involves: providing a logging device moveable through the borehole; applying a static magnetic field in the formations to align spins in the formations in the direction of the static magnetic field; producing a tipping pulse for tipping the direction of the spins with respect to the static magnetic field direction; and detecting the time varying magnitude of the spin magnetization as the magnetization returns toward the static magnetic field direction; the longitudinal magnetization decay being determinable from the detected time varying magnitude of the spin magnetization. Related methods and apparatus for implementing these methods are also described.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: May 13, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Robert L. Kleinberg
  • Patent number: 6549854
    Abstract: A method, apparatus, and article of manufacture are provided that use measurement data to create a model of a subsurface area. The method includes creating an initial parameterized model having an initial estimate of model parameter uncertainties; considering measurement data from the subsurface area; updating the model and its associated uncertainty estimate; and repeating the considering and updating steps with additional measurement data. A computer-based apparatus and article of manufacture for implementing the method are also disclosed. The method, apparatus, and article of manufacture are particularly useful in assisting oil companies in making hydrocarbon reservoir data acquisition, drilling and field development decisions.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: April 15, 2003
    Assignee: Schlumberger Technology Corporation
    Inventors: Alberto Malinverno, Michael Prange
  • Patent number: 6529445
    Abstract: A method of correcting seismic data for the effects of a rough sea surface is disclosed. Corrections for the effect of a rough sea surface are made by determining the time-dependent height of the sea surface, either by direct measurement or by calculation from the seismic data. A deconvolution operator is generated from the measured or calculated height of the sea surface and is used to reduce or eliminate the effects of the rough sea surface. Once the data has been corrected for the effect of the rough sea surface, it can be processed in any way suitable for processing seismic data obtained in flat sea conditions.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: March 4, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Robert Laws
  • Patent number: RE38129
    Abstract: An improved method of fluid analysis in the borehole of a well. A fluid sampling tool is fitted with a pumpout module that can be used to draw fluids from the formation, circulate them through the instrument, and then expel this fluid to the borehole. It has been determined that certain measurements would be most valuable to implement down hole, such as the formation fluid bubble point and dew point. Accurate bubble point and dew point measurements are made by forming bubbles or a liquid drop in a measured sample, and detecting same.
    Type: Grant
    Filed: August 22, 2001
    Date of Patent: June 3, 2003
    Assignee: Schlumberger Technology Corporation
    Inventor: Robert L. Kleinberg