Patents Represented by Attorney William H. Holt
  • Patent number: 7215117
    Abstract: Material properties such as stress in a ferromagnetic material may be measured using an electromagnetic probe. While generating an alternating magnetic field in the object, and sensing the resulting magnetic field with a sensor, the signals from the magnetic sensor may be resolved into in-phase and quadrature components. The signals are affected by both geometrical parameters such as lift-off and by material properties, but these influences may be separated by mapping the in-phase and quadrature components directly into material property and lift-off components, and hence a material property and/or the lift-off may be determined. The mapping may be represented in the impedance plane as two sets of contours representing signal variation with lift-off (A) (for different values of stress) and signal variation with stress (B) (for different values of lift-off), the contours of both sets (A, B) being curved. The stress contours (B) intersect any one liftoff contour (A) at a constant angle.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: May 8, 2007
    Assignee: ESR Technology Ltd.
    Inventor: David John Buttle
  • Patent number: 7201883
    Abstract: A catalytic reactor comprises a plurality of sheets defining flow channels between them. Within each flow channel is a foil of corrugated material whose surfaces are coated with catalytic material. Flow channels for a first gas extend in oblique directions relative to the flow channels for a second gas. The reactor incorporates header chambers to supply gas mixtures to the flow channels, the headers communicating with adjacent channels being separate. The reactor enables different gas mixtures to be supplied to adjacent channels, which may be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets separating the endothermic reaction. When the catalyst in one set of flow channels becomes spent, it can be replaced by removing a header.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: April 10, 2007
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell
  • Patent number: 7189271
    Abstract: A catalytic reactor comprises a plurality of thin tray-like metal sheets each with a peripheral rim and arranged as a stack to define first gas flow channels between adjacent sheets, alternating with second gas flow channels between adjacent sheets, so as to ensure good thermal contact between gases in the first and the second gas flow channels. Each sheet also defines at least four apertures for flow of gases, and tubes and seal apertures in one sheet to corresponding apertures in the adjacent sheet. The gas flows through the channels may be guided by corrugations, and are preferably in countercurrent in adjacent channels. Appropriate catalysts are coated onto the sheets and in the two gas flow channels.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 13, 2007
    Assignee: Compactgtl PLC
    Inventor: Jason Andrew Maude
  • Patent number: 7189476
    Abstract: An anode for a rechargeable lithium cell comprises carbon nanotubes that contain within them an element that can form alloys or compounds reversibly with lithium over a range of compositions. The element within the nanotubes may be aluminum or tin. These carbon nanotubes are bound together to form a coherent layer with a polymeric binder, such as a polymer of viniylidene fluoride. A cell with such an anode should have improved capacity and improved reversibility, because the nanotubes provide a stabilizing framework for the alloy.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: March 13, 2007
    Assignee: ABSL Power Solutions Ltd.
    Inventors: William John Macklin, Derek John Fray
  • Patent number: 7186388
    Abstract: A catalytic reactor comprises a stack of sheets defining flow channels between them. Within each flow channel is a flexible wire structure whose surfaces are coated with catalytic material. Flow channels for a first gas extend along S-shaped curved paths whereas the flow channels for a second gas are straight. The reactor incorporates header chambers to supply gas mixtures to the flow channels, each header chamber being a rectangular cap attached to a face of the stack. The reactor enables different gas mixtures to be supplied to adjacent channels, which nay be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets separating the adjacent channels, from the exothermic reaction to the endothermic reaction. When the catalyst in one set of flow channels becomes spent, it can be replaced by removing a header.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 6, 2007
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, Jason Andrew Maude
  • Patent number: 7183378
    Abstract: Proteins may be made by genetically engineered microorganisms, the protein being stored in the form of inclusion bodies (IB). The proteins in the inclusion bodies are in an insoluble and inactive form. They may be dissolved using a solubilization reagent (18), and the resulting solution diluted so that the proteins refold into the active form. This refolding of the protein is enhanced by subjecting a solution or suspension of the protein to low intensity sound waves (25), at a low enough intensity that the protein is not denatured. The intensity may be between 10 and 100 mW/cm2.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: February 27, 2007
    Assignee: Accentus PLC
    Inventor: Linda Jane McCausland
  • Patent number: 7166644
    Abstract: A process for producing a porous polymeric structure which process comprises preparing a solution comprising a polymer which comprises vinylidene fluoride in a solvent/non-solvent mixture; holding the solution at an elevated temperature until the polymer is completely solvated; casting the solution to form a thin layer; and drying the thin layer to form a membrane. The polymer is dispersed in the non-solvent before addition of the solvent, when preparing the solution, to prevent microgel formation. The prolonged solvation at elevated temperature provides a stable solution, and enables membranes of controlled porosity to be formed.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: January 23, 2007
    Assignee: ABSL Power Solutions Ltd
    Inventors: Neville John Mattingley, Esam Kronfli
  • Patent number: 7163663
    Abstract: A plasma reactor (11) of the silent discharge or dielectric barrier type for treatment of a gaseous medium is provided with a layer of material (34) positioned to present a surface extending along at least part of the length of the gas flow path. Particulates or selected species are entrapped on the surface. A preferred electrode arrangement provides surface discharge in the plasma at the surface of the layer of material.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: January 16, 2007
    Assignee: Accentus PLC
    Inventors: John Sydney Carlow, Ka Lok Ng, James Timothy Shawcross
  • Patent number: 7150768
    Abstract: A cell such as a lithium ion cell consists of an anode and a cathode comprising respective lithium ion insertion materials, separated by an electrolyte. A practical cell may be made by stacking a plurality of anode plates (14) and cathode plates (12) alternately, and interleaving a continuous layer (10) of polymer electrolyte or separator material between successive anode and cathode plates so it forms a zigzag. If the continuous layer is a separator, the assembly is then contacted with a solution comprising lithium salt in a compatible organic solvent, which provides the cell electrolyte. This procedure enables cells to be made with thin electrolyte layers, for example less than 30 ?m thick, and hence of low internal resistance.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: December 19, 2006
    Assignee: ABSL Power Solutions Ltd
    Inventors: Mathew Martin Airey, Harry Bridge, David Gerrard Leyland
  • Patent number: 7141190
    Abstract: A process of molding thermoplastic preforms into bottles and similar containers wherein pressurized liquids, such as water, are used in the stretching and shaping process instead of pneumatic gases, such as heated air. The result is greater control over the crystallization of the thermoplastic material and economies of scale. Addition of peroxides, or similar materials are used for sterilization can be added to the liquid thereby conditioning the container for immediate filling with sterile product and eliminating the need for an additional sterilization step following completion of the molding step. As an added step, dry, sterile air can be used to vent and dry the container just prior to introduction of product. Also use of liquid, rather than heated air, provides a washing or cleansing of actealdehydes or ethanol, which may be present in the extruded preform, from the finished container.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: November 28, 2006
    Inventor: Ihab M. Hekal
  • Patent number: 7121347
    Abstract: A method and an apparatus raise samples of liquid such as water from a low level to a higher level, for example for obtaining a sample of groundwater from a borehole. The apparatus comprises a pair of tubes (14 and 16) extending alongside each other, which are introduced into the borehole, linked by a connector (20) at their lower end, a valve (22) communicating between the inside and outside of one of the tubes (16) near its lower end, and a pig (46) insertable into the tube (16). By adjusting the pressure in each tube at their upper end, the pig (46) can be moved from one end to the other of the apparatus (10) and used to transfer samples of water.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: October 17, 2006
    Assignee: AEA Technology Engineering Services, Inc.
    Inventors: Paul Anthony Murray, Stephen Wayne Smith, Peter Geoffrey Griffiths, Patrick Wakefield Nevins
  • Patent number: 7109248
    Abstract: Natural gas is processed to generate longer-chain hydrocarbons, the process comprising subjecting the gas to steam reforming to generate a mixture of carbon monoxide and hydrogen, and then subjecting this mixture to Fischer-Tropsch synthesis. The Fischer-Tropsch synthesis is performed at an elevated temperature above 230° C. and with a gas hourly space velocity greater than 10 000 hr?1 so as to achieve a selectivity to the production of C5+ hydrocarbons that is less than 65%. The resulting liquid product can be used as a vehicle fuel, while the tail gases may be used to generate electricity.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: September 19, 2006
    Assignee: GTL Microsystems AG
    Inventor: Michael Joseph Bowe
  • Patent number: 7087651
    Abstract: Methane is reacted with steam, to generate carbon monoxide and hydrogen in a first catalytic reactor; the resulting gas mixture can then be used to perform Fischer-Tropsch synthesis in a second catalytic reactor. In performing the steam/methane reforming, the gas mixture is passed through a narrow flow channel containing a catalyst structure on a metal substrate, and adjacent to a source of heat, in a time less than 0.5 s, so that only those reactions that have comparatively rapid kinetics will occur. Both the average temperature and the exit temperature of the channel are in the range 750° to 900° C. The ratio of steam to methane should preferably be 1.4 to 1.6, for example about 1.5. Almost all the methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After performing Fischer-Tropsch synthesis, the remaining hydrogen is preferably used to provide heat for the reforming reaction.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: August 8, 2006
    Assignee: GTL Microsystems AG
    Inventors: Clive Derek Lee-Tuffnell, Ian Frederick Zimmerman, Michael Joseph Bowe, Jason Andrew Maude
  • Patent number: 7081824
    Abstract: The alignment of railway tracks may be monitored using an accelerometer (36) mounted on a bogie (24) of a railway vehicle to detect lateral accelerations, and a displacement transducer (38) to monitor the lateral displacements of a wheelset (27) relative to the bogie. The acceleration signals are digitised, and processed corresponding to double integration, so as to deduce the lateral displacements of the bogie, and in conjunction with the signals from the displacement transducer hence to determine the effective lateral displacements of the track. This can provide a more useful indication of the lateral positions of the rails than measurements of the gauge faces. Such equipment (16) may be installed in a service vehicle, and operate automatically, downloading resulting data to a remote base station at regular intervals.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: July 25, 2006
    Assignee: AEA Technology PLC
    Inventor: David Gilbert
  • Patent number: 7073532
    Abstract: A valve assembly (10) comprises a valve stem (14) with a bore (15) and radial apertures (17), and a sleeve (18) closed atone end and slidable over the valve stem (14) to obstruct the apertures (17). At the end of the valve stem opposite the outlet end, the valve stem (14) defines a fluidic vortex chamber (22) with both tangential inlets (28) and non-tangential peripheral inlets (26), and with an axial outlet (24) communicating with the bore (15). The sleeve (18) defines at least one radial port (32) near its closed end. The valve assembly operates in a conventional fashion except when approaching closure. Once the last of the apertures (17) in the valve stem has been closed, the only flow path is through the fluidic vortex chamber (22). Further movement of the sleeve (18) alters the distribution of the flow between the non-tangential inlets (26) and the tangential inlets (28), so adjusting the strength of the fluidic vortex and the resistance to fluid flow.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: July 11, 2006
    Assignee: Accentus PLC
    Inventor: Michael Joseph Bowe
  • Patent number: 7074370
    Abstract: A plasma assisted reactor for the removal of carbonaceous combustion products or for simultaneous removal of carbonaceous products and nitrogen oxides from the exhaust emissions from an internal combustion engine, wherein the reactor includes a gas permeable bed made at least primarily of active materials comprising perovskite or vanadate.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: July 11, 2006
    Assignee: Accentus PLC
    Inventors: David Leslie Segal, David Raybone, James Timothy Shawcross, Michael Inman
  • Patent number: 7067561
    Abstract: Fischer-Tropsch synthesis is performed on a CO/H*2 feed gas using a plurality of compact catalytic reactor modules (12) each defining catalytic reaction channels and coolant channels, in two successive stages, with the same number of reactor modules for each stage. The gas flow velocity in the first stage is sufficiently high that no more than 75% of the CO undergoes conversion. The gases are cooled (16) between successive stages so as to remove water vapour, and the pressure is reduced (20) before they are subjected to the second stage. In addition the reaction temperature for the second stage is lower than for the first stage, such that no more than 75% of the remaining carbon monoxide undergoes conversion during the second stage too. The deleterious effect of water vapour on the catalyst is hence suppressed, while the overall capacity of the plant (10) can be adjusted by closing off modules in each stage while keeping the numbers equal.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: June 27, 2006
    Assignee: GTL Microsystems AG
    Inventor: Michael Joseph Bowe
  • Patent number: 7067092
    Abstract: A reactor chamber forms part of an exhaust system of an internal combustion engine. Within the chamber are electrodes between which there is disposed a bed of active material through which, in use, the exhaust gases pass. In the presence of an electrical discharge, driven by an electrical voltage applied across the electrodes, the active material has a catalytic action in the reduction of nitrogenous oxides in the exhaust and also acts to remove hydrocarbons from the exhaust gases.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: June 27, 2006
    Assignee: Accentus PLC
    Inventors: Stephen Ivor Hall, David Raybone, Fiona Winterbottom, David Leslie Segal, James Timothy Shawcross, Ross Alexander Morgan, Anthony Robert Martin, Michael Inman
  • Patent number: D524978
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: July 11, 2006
    Assignee: DLF
    Inventor: Gilles Bellaloum
  • Patent number: D533450
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: December 12, 2006
    Assignee: Aquasol Limited
    Inventors: David Brian Edwards, Michael Edward Parkes