Patents Assigned to Acorn Technologies, Inc.
  • Publication number: 20140334530
    Abstract: An OFDM communication system performs time domain channel estimation responsive to received symbols before the symbols are processed by a fast Fourier transform. The communication system generates virtual pilots from actual pilots to improve the stability and quality of channel estimation. The system generates a reference signal from the actual and virtual pilots and correlates the resulting reference signal with a signal responsive to the received symbol to generate an initial channel impulse response (CIR) and to determine statistics about the channel. In some circumstances, the resulting reference signal is correlated with a modified symbol in which the actual and virtual pilot locations are emphasized and the data locations are deemphasized. Time domain channel estimation iteratively improves on the initial CIR. The system determines channel estimates for data only symbols through averaging such as interpolation.
    Type: Application
    Filed: July 25, 2014
    Publication date: November 13, 2014
    Applicant: Acorn Technologies, Inc.
    Inventors: Steven C. Thompson, Fernando Lopez de Victoria
  • Patent number: 8824527
    Abstract: An OFDM communication system performs time domain channel estimation responsive to received symbols before the symbols are processed by a fast Fourier transform. The communication system generates virtual pilots from actual pilots to improve the stability and quality of channel estimation. The system generates a reference signal from the actual and virtual pilots and correlates the resulting reference signal with a signal responsive to the received symbol to generate an initial channel impulse response (CIR) and to determine statistics about the channel. In some circumstances, the resulting reference signal is correlated with a modified symbol in which the actual and virtual pilot locations are emphasized and the data locations are deemphasized. Time domain channel estimation iteratively improves on the initial CIR. The system determines channel estimates for data only symbols through averaging such as interpolation.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 2, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Steven C Thompson, Fernando Lopez de Victoria
  • Publication number: 20140225160
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Acorn Technologies, Inc.
    Inventors: Paul A. Clifton, R Stockton Gaines
  • Publication number: 20140199813
    Abstract: Processes for making field effect transistors relax a buried stressor layer to induce strain in a silicon surface layer above the buried stressor layer. The buried stressor layer is relaxed and the surface layer is strained by implantation into at least the buried stressor layer, preferably on both sides of a portion of the surface layer that is to be stressed. For example, implanting ions through the surface silicon layer on either side of the gate structure of the preferred FET implementation into an underlying stressor layer can induce strain in a channel region of the FET. This process can begin with a silicon or silicon-on-insulator substrate with a buried silicon germanium layer having an appropriate thickness and germanium concentration. Other stressor materials can be used.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: Acorn Technologies, Inc.
    Inventor: Paul A. Clifton
  • Patent number: 8766336
    Abstract: An electrical device in which an interface layer comprising arsenic is disposed between and in contact with a conductor and a semiconductor. In some cases, the interface layer may be a monolayer of arsenic.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: July 1, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 8761274
    Abstract: An OFDM system generates a channel estimate in the time domain for use in either a frequency domain equalizer or in a time domain equalizer. Preferably channel estimation is accomplished in the time domain using a locally generated reference signal. The channel estimator generates an initial estimate from a cross correlation between the time domain reference signal and an input signal input to the receiver and generates at least one successive channel estimate. Preferably the successive channel estimate is determined by vector addition (or subtraction) to the initial channel estimate. The at least one successive channel estimate reduces the minimum mean square error of the estimate with respect to a received signal.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: June 24, 2014
    Assignee: Acorn Technologies, Inc.
    Inventor: Fernando Lopez de Victoria
  • Publication number: 20140170826
    Abstract: A process for forming contacts to a field effect transistor provides edge relaxation of a buried stressor layer, inducing strain in an initially relaxed surface semiconductor layer above the buried stressor layer. A process can start with a silicon or silicon-on-insulator substrate with a buried silicon germanium layer having an appropriate thickness and germanium concentration. Other stressor materials can be used. Trenches are etched through a pre-metal dielectric to the contacts of the FET. Etching extends further into the substrate, through the surface silicon layer, through the silicon germanium layer and into the substrate below the silicon germanium layer. The further etch is performed to a depth to allow for sufficient edge relaxation to induce a desired level of longitudinal strain to the surface layer of the FET. Subsequent processing forms contacts extending through the pre-metal dielectric and at least partially into the trenches within the substrate.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: Acorn Technologies, Inc.
    Inventor: Paul A. Clifton
  • Patent number: 8731017
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 20, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Patent number: 8658523
    Abstract: A metal source/drain field effect transistor is fabricated such that the source/drain regions are deposited, multilayer structures, with at least a second metal deposited on exposed surfaces of a first metal.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: February 25, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Carl M. Faulkner, Daniel J. Connelly, Paul A. Clifton, Daniel E. Grupp
  • Publication number: 20130140629
    Abstract: A transistor having at least one passivated Schottky barrier to a channel includes an insulated gate structure on a p-type substrate in which the channel is located beneath the insulated gate structure. The channel and the insulated gate structure define a first and second undercut void regions that extend underneath the insulated gate structure toward the channel from a first and a second side of the insulated gate structure, respectively. A passivation layer is included on at least one exposed sidewall surface of the channel, and metal source and drain terminals are located on respective first and second sides of the channel, including on the passivation layer and within the undercut void regions beneath the insulated gate structure. At least one of the metal source and drain terminals comprises a metal that has a work function near a valence band of the p-type substrate.
    Type: Application
    Filed: February 1, 2013
    Publication date: June 6, 2013
    Applicant: ACORN TECHNOLOGIES, INC.
    Inventor: Acorn Technologies, Inc.
  • Patent number: 8450133
    Abstract: Improved silicon solar cells, silicon image sensors and like photosensitive devices are made to include strained silicon at or sufficiently near the junctions or other active regions of the devices to provide increased sensitivity to longer wavelength light. Strained silicon has a lower band gap than conventional silicon. One method of making a solar cell that contains tensile strained silicon etches a set of parallel trenches into a silicon wafer and induces tensile strain in the silicon fins between the trenches. The method may induce tensile strain in the silicon fins by filling the trenches with compressively strained silicon nitride or silicon oxide. A deposited layer of compressively strained silicon nitride adheres to the walls of the trenches and generates biaxial tensile strain in the plane of adjacent silicon fins.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: May 28, 2013
    Assignee: Acorn Technologies, Inc.
    Inventor: Paul A. Clifton
  • Publication number: 20130119446
    Abstract: An electrical device in which an interface layer comprising arsenic is disposed between and in contact with a conductor and a semiconductor. In some cases, the interface layer may be a monolayer of arsenic.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 16, 2013
    Applicant: Acorn Technologies, Inc.
    Inventor: Acorn Technologies, Inc.
  • Patent number: 8431469
    Abstract: An electrical device in which an interface layer is disposed between and in contact with a metal and a Si-based semiconductor, the interface layer being of a thickness effective to depin of the Fermi level of the semiconductor while still permitting current to flow between the metal and the semiconductor. The interface layer may include a layer of a passivating material (e.g., made from nitrogen, oxygen, oxynitride, arsenic, hydrogen and/or fluorine) and sometimes also includes a separation layer. In some cases, the interface layer may be a monolayer of a semiconductor passivating material. The interface layer thickness corresponds to a minimum specific contact resistance of less than or equal to 10 ?-?m2 or even less than or equal to 1 ?-?m2 for the electrical device.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 30, 2013
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 8395213
    Abstract: An SOI wafer contains a compressively stressed buried insulator structure. In one example, the stressed buried insulator (BOX) may be formed on a host wafer by forming silicon oxide, silicon nitride and silicon oxide layers so that the silicon nitride layer is compressively stressed. Wafer bonding provides the surface silicon layer over the stressed insulator layer. Preferred implementations of the invention form MOS transistors by etching isolation trenches into a preferred SOI substrate having a stressed BOX structure to define transistor active areas on the surface of the SOI substrate. Most preferably the trenches are formed deep enough to penetrate through the stressed BOX structure and some distance into the underlying silicon portion of the substrate. The overlying silicon active regions will have tensile stress induced due to elastic edge relaxation.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: March 12, 2013
    Assignee: Acorn Technologies, Inc.
    Inventors: Paul A. Clifton, R. Stockton Gaines
  • Patent number: 8386549
    Abstract: Multistage Wiener filters (MWF) represent a component of the MWF as an un-normalized vector of filter coefficients within a finite impulse response (FIR) filter in a manner that avoids reliance on the 2-norm operation of the un-normalized vector of coefficients. The 2-norm operation can be replaced by less expensive operations performed elsewhere in the MWF. Preferably the filter adds only a few additional addition, subtraction and multiplication operations to compensate for the elimination of the square root and the division operations used for the 2-norm operation. As a result, it is possible to eliminate all or nearly all of the square rod and arithmetic division operations of at least some implementations of the MWF.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: February 26, 2013
    Assignee: Acorn Technologies, Inc.
    Inventor: Alvin M. Despain
  • Patent number: 8377767
    Abstract: A transistor includes a semiconductor channel disposed nearby a gate and in an electrical path between a source and a drain, wherein the channel and at least one of the source or the drain are separated by an interface layer so as to form a channel-interface layer-source/drain junction in which a Fermi level of the semiconductor channel is depinned in a region near the junction and the junction has a specific contact resistance of less than approximately 1000 ?-?m2. The interface layer may include a passivating material such as a nitride, a fluoride, an oxide, an oxynitride, a hydride and/or an arsenide of the semiconductor of the channel. In some cases, the interface layer consists essentially of a monolayer configured to depin the Fermi level of the semiconductor of the channel, or an amount of passivation material sufficient to terminate all or a sufficient number of dangling bonds of the semiconductor channel to achieve chemical stability of the surface.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: February 19, 2013
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Patent number: 8361867
    Abstract: A process for forming contacts to a field effect transistor provides edge relaxation of a buried stressor layer, inducing strain in an initially relaxed surface semiconductor layer above the buried stressor layer. A process can start with a silicon or silicon-on-insulator substrate with a buried silicon germanium layer having an appropriate thickness and germanium concentration. Other stressor materials can be used. Trenches are etched through a pre-metal dielectric to the contacts of the FET. Etching extends further into the substrate, through the surface silicon layer, through the silicon germanium layer and into the substrate below the silicon germanium layer. The further etch is performed to a depth to allow for sufficient edge relaxation to induce a desired level of longitudinal strain to the surface layer of the FET. Subsequent processing forms contacts extending through the pre-metal dielectric and at least partially into the trenches within the substrate.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Acorn Technologies, Inc.
    Inventor: Paul A. Clifton
  • Patent number: 8361868
    Abstract: Processes for making field effect transistors relax a buried stressor layer to induce strain in a silicon surface layer above the buried stressor layer. The buried stressor layer is relaxed and the surface layer is strained by implantation into at least the buried stressor layer, preferably on both sides of a portion of the surface layer that is to be stressed. For example, implanting ions through the surface silicon layer on either side of the gate structure of the preferred FET implementation into an underlying stressor layer can induce strain in a channel region of the FET. This process can begin with a silicon or silicon-on-insulator substrate with a buried silicon germanium layer having an appropriate thickness and germanium concentration. Other stressor materials can be used.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: January 29, 2013
    Assignee: Acorn Technologies, Inc.
    Inventor: Paul A. Clifton
  • Patent number: 8263466
    Abstract: A process for forming a FET (e.g., an n-FET or a p-FET), in which during formation a metal which makes up a source or drain of the transistor is stressed so that stress is induced in a semiconductor channel of the transistor.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: September 11, 2012
    Assignee: Acorn Technologies, Inc.
    Inventors: Paul Clifton, Daniel J. Connelly
  • Patent number: 8263467
    Abstract: Processes for forming self-aligned, deposited source/drain, insulated gate, transistors and, in particular, FETs. By depositing a source/drain in a recess such that it remains only in the recess, the source/drain can be formed self-aligned to a gate and/or a channel of such a device. For example, in one such process a gate structure of a transistor may be formed and, in a material surrounding the gate structure, a recess created so as to be aligned to an edge of the gate structure. Subsequently, a source/drain conducting material may be deposited in the recess. Such a source/drain conducting material may be deposited, in some cases, as layers, with one or more such layers being planarized following its deposition. In this way, the conducting material is kept within the boundaries of the recess.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: September 11, 2012
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly, Paul A. Clifton, Carl M. Faulkner