Patents Assigned to Advanced Bionics Corporation
  • Patent number: 7103417
    Abstract: An adaptive place-pitch ranking procedure for use with a cochlear implant or other neural stimulation system provides a systematic method for quantifying the magnitude and direction of errors along the place-pitch continuum. The method may be conducted and completed in a relatively short period of time. In use, the implant user or listener is asked to rank the percepts obtained after a sequential presentation of monopolar stimulation pulses are applied to a selected spatially-defined electrode pair. Should the patient's judgment of pitch order be correct for all applied interrogations, then no further testing involving the tested electrode pair (two electrode contacts) is undertaken. However, should there be errors in the place-pitch ranking, which errors evidence perceptual place-confusions, then a search is undertaken for the spread of the perceptual confusion by separating the target channel and competing channel by one electrode contact at a time.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: September 5, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Philip A Segel, Tracey L Kruger
  • Patent number: 7103408
    Abstract: An electrode assembly includes an electrode electrically connected to a capacitor with a wire. A method of assembly for attaching a wire to a capacitor and an electrode may include an assembly carrier for housing and securing the wire, capacitor, and electrode during assembly.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: September 5, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Matthew I Haller, Tom Xiaohai He, Jay Daulton
  • Patent number: 7099718
    Abstract: An implantable lead having at least one electrode contact at or near its distal end prevents undesirable movement of the electrode contact from its initial implant location. One embodiment relates to a spinal cord stimulation (SCS) lead. A balloon may be positioned on the electrode lead array. The balloon is filled with air, liquid or a compliant material. When inflated, the balloon stabilizes the lead with respect to the spinal cord and holds the lead in place. The pressure of the balloon is monitored or otherwise controlled during the filling process in order to determine at what point the filling process should be discontinued. An elastic aspect of the balloon serves as a contained relief valve to limit the pressure the balloon may place on the surrounding tissues when the epidural space is constrained.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: James R. Thacker, David K. L. Peterson, James P. McGivern, Michael S. Colvin
  • Patent number: 7097746
    Abstract: An anode protection device and method are provided. The method includes placing a sacrificial anode in proximity to the positive and negative contacts to shield or distort the field therebetween which provides preferential corrosion of the sacrificial anode, instead of the anode. The protection device is a sacrificial anode having various forms and placed in different configurations. In one form the sacrificial anode is a plate. In another form the sacrificial anode is a ring placed around either the positive contact or negative contact to provide a shield between the negative and positive contacts. In a further device embodiment, the sacrificial anodic plate can be welded to the aluminum case of a rechargeable battery of a behind-the-ear (BTE) hearing device.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: August 29, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: George Tziviskos, C. Geoffrey E Fernald
  • Publication number: 20060184204
    Abstract: An implantable microstimulator arrangement includes at least one implantable microstimulator unit; an implantable battery unit separate from the implantable microstimulator unit(s); and at least one lead coupling the microstimulator unit(s) to the battery unit. The microstimulator unit(s) are operated to treat body tissue.
    Type: Application
    Filed: February 11, 2005
    Publication date: August 17, 2006
    Applicant: Advanced Bionics Corporation
    Inventor: Tom He
  • Patent number: 7092763
    Abstract: An implantable neural stimulation system, such as an auditory Fully Implantable System (FIS), includes: (1) an implanted device capable of providing desired tissue or nerve stimulation; and (2) a remote control unit that provides a mechanism for readily controlling the implant device. The remote control unit uses a first signal path to send signals to the implant device, and a second signal path to receive signals from the implant device. The combination of these two signal paths provides a full-duplex channel between the remote control unit and the implant device through which appropriate control and status signals may be sent and received. In one embodiment, the first signal path comprises an audio signal path through which audio control signals, e.g., a tone sequence or a 32-bit word FSK modulated between 300 and 1200 Hz, are sent; and the second signal path comprises a RF signal path through which a BPSK, QPSK or FM modulated RF signal is received.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: August 15, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Glen A Griffith, Michael A Faltys
  • Patent number: 7092762
    Abstract: An external transmitter circuit drives an implantable neural stimulator having an implanted coil from a primary coil driven by a power amplifier. For efficient power consumption, the transmitter output circuit (which includes the primary coil driven by the power amplifier inductively coupled with the implanted coil) operates as a tuned resonant circuit. When operating as a tuned resonant circuit, it is difficult to modulate the carrier signal with data having sharp rise and fall times without using a high power modulation amplifier. Sharp rise and fall times are needed in order to ensure reliable data transmission. To overcome this difficulty, the present invention includes an output switch that selectively inserts a resistor in the transmitter output coil circuit in order to de-tune the resonant circuit only during those times when data modulation is needed. Such de-tuning allows sharp rise and fall times in the data modulation without the need for using a high power modulation amplifier.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: August 15, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Scott M Loftin, Kelly H McClure
  • Patent number: 7083593
    Abstract: An implantable pump system includes: (1) an implantable pump having separate chambers or reservoirs, at least one of which is coupled to the pump so as to allow a programmable rate of delivery of the medication stored in the pump chamber or reservoir, the other chambers or reservoirs of which are at least capable of delivery of a bolus via a pressurized, and potentially independently programmable chamber or pumping mechanism; (2) a patient controller that enables the actuation of the pump so as to administer a bolus or programmed rate of the first, second, third, . . . or nth medication contained in the independent chambers or reservoirs coupled to the pump; and (3) a catheter having two or more reservoir-specific inlet ports directed into respective lumens of the catheter.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 1, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Mark R. Stultz
  • Publication number: 20060161204
    Abstract: An implantable microstimulator includes a plastic housing having a first end and a second end; an electronic subassembly disposed within the housing; a first electrode disposed at the first end of the plastic housing and in electrical communication with the electronic subassembly; and a second electrode disposed at the second end of the plastic housing and in electrical communication with the electronic subassembly. The plastic housing, first electrode, and second electrode form a hermetically sealed structure around the electronic subassembly.
    Type: Application
    Filed: January 20, 2005
    Publication date: July 20, 2006
    Applicant: Advanced Bionics Corporation
    Inventors: Michael Colvin, Tom He, Matt Haller
  • Patent number: 7079901
    Abstract: An external transmitter circuit drives an implantable neural stimulator having an implanted coil from a primary coil driven by a power amplifier. For efficient power consumption, the transmitter output circuit (which includes the primary coil driven by the power amplifier inductively coupled with the implanted coil) operates as a tuned resonant circuit. When operating as a tuned resonant circuit, it is difficult to modulate the carrier signal with data having sharp rise and fall times without using a high power modulation amplifier. Sharp rise and fall times are needed in order to ensure reliable data transmission. To overcome this difficulty, the present invention includes an output switch that selectively inserts a resistor in the transmitter output coil circuit in order to de-tune the resonant circuit only during those times when data modulation is needed. Such de-tuning allows sharp rise and fall times in the data modulation without the need for using a high power modulation amplifier.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: July 18, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Scott M Loftin, Kelly H McClure
  • Patent number: 7076308
    Abstract: A bionic ear cochlear stimulation system has the capability to stimulate fast enough to induce stochastic neural firing, thereby acting to restore “spontaneous” neural activity. Such neurostimulation involves the use of a high rate pulsitile stimulation signal that is amplitude modulated with sound information. Advantageously, by using such neurostimulation, a fitting system may be utilized that does not normally require T-level threshold measurements. T-level threshold measurements are not required in most instances because the high-rate pulsitile stimulation, even though at levels that would normally be a sub-threshold electrical stimulus, is able to modulate neural firing patterns in a perceptible way.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: July 11, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Edward H. Overstreet, Michael A. Faltys
  • Publication number: 20060149335
    Abstract: A device for brain stimulation that includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; and at least one recording electrode, separate from the at least one stimulation electrode, disposed along the longitudinal surface of the lead.
    Type: Application
    Filed: January 5, 2005
    Publication date: July 6, 2006
    Applicant: Advanced Bionics Corporation
    Inventor: Paul Meadows
  • Publication number: 20060149336
    Abstract: A device for brain stimulation includes a lead having a longitudinal surface; at least one stimulation electrode disposed along the longitudinal surface of the lead; at least one recording electrode, separate from the at least one stimulation electrode, disposed on the lead; and an implantable pulse generator coupled to the at least one stimulation electrode. In some instances, the implantable pulse generator can be implanted into a burr hole in the skull made for insertion of the lead into the brain.
    Type: Application
    Filed: September 19, 2005
    Publication date: July 6, 2006
    Applicant: Advanced Bionics Corporation
    Inventor: Paul Meadows
  • Patent number: 7054692
    Abstract: A fixation device fixes the position of an implantable microminiature device residing proximally to a target site such as a nerve or a muscle. In one embodiment, the device comprises a sheath and a means for attaching the device to adjacent tissue. The means for attaching may be any one of several embodiments including one or more grasping members, a combination of grasping members and one or more helices, or an extension adapted to accept a suture. In another embodiment, the fixation device comprises an assembly residing in the implantation pathway, behind the stimulation device, thus preventing retreat of the stimulation device in the pathway. In a preferred use, the fixation device fixes the position of a microstimulator component of a Peripheral Nerve Stimulation (PNS) system.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 30, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, James P McGivern
  • Patent number: 7054689
    Abstract: An implantable stimulator(s), small enough to be located near or adjacent to an autonomic nerve(s) innervating urinary and/or gastrointestinal structures, uses a power source/storage device, such as a rechargeable battery. Periodic recharging of such a power source/storage device is accomplished, for example, by inductive coupling with an external appliance. The small stimulator provides a means of stimulating a nerve(s) or other tissue when desired, without the need for external appliances during the stimulation session. When necessary, external appliances are used for the transmission of data to and/or from the stimulator(s) and for the transmission of power, if necessary. In a preferred embodiment, the system is capable of open- and closed-loop operation. In closed-loop operation, at least one implant includes at least one sensor, and the sensed condition is used to adjust stimulation parameters.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: May 30, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Todd K Whitehurst, James P McGivern, Carla M Mann
  • Patent number: 7054691
    Abstract: An implantable system includes a plurality of implantable devices that are detachably coupled to each other. Each implantable device of the system includes: (1) an hermetically-sealed case housing electronic components; (2) feedthru terminals mounted to a wall of the hermetically-sealed case adapted to allow electrical contact from a location outside the hermetically-sealed case with the electronic components housed inside the hermetically-sealed case; (3) a coil external to the hermetically-sealed case attached to the feedthru terminals; (4) a flexible molding bonded to the hermetically-sealed case, and wherein the coil is embedded within or otherwise attached to the flexible molding; and (5) engagement means for engaging the flexible molding with a flexible molding of another implantable device of the implantable system. Such engagement means also aligns the coils of the implantable devices that are thus engaged with the engaging means to allow electromagnetic coupling to occur between the aligned coils.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: May 30, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Janusz A. Kuzma, Michael A. Faltys
  • Patent number: 7050858
    Abstract: An insertion tool uses a stylet wire to help guide an electrode system into a cochlea. The insertion tool includes three main elements or parts: a handle, a guide and a slider. The handle is made from light stainless steel tube flattened in front with a machined slot. The guide consists of a plurality of metal tubes, fixed to each other within a holding bracket. In one embodiment, the slider includes a stabilizer wire, a long stylet wire, and a short stylet wire. During the assembly process, the stabilizer and stylet wires are inserted into respective tubes of the guide and the end of the stabilizer wire is bent to form an offset. The electrode system is loaded onto the tool by inserting the short stylet wire into a holder that supports the electrode lead.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 23, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Janusz A. Kuzma, Thomas J. Balkany, Chuladatta Thenawara
  • Patent number: 7047081
    Abstract: A multicontact electrode array suitable for implantation in living tissue includes a distal end having multiple spaced-apart ring or band electrode contacts carried on a flexible tube carrier. Each ring electrode contact is laser welded to a respective wire tip that has a multi-helix orientation on the inside of a separation tube. The center of the multi-helix wire defines a lumen wherein a positioning stylet, or other suitable positioning tool, may be removably inserted when the electrode array is implanted. The method of making the multicontact electrode array includes, as an initial step, winding lead wires around a suitable mandrel so as to form a multi-helix configuration. (Alternatively, the wire may be purchased in a multiwire pre-wound configuration that defines a lumen, in which case the mandrel is slipped inside the lumen.) Then, at a distal end of the electrode, each wire within the multi-helix winding is unwound so as to protrude out from the winding.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: May 16, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Janusz A Kuzma
  • Patent number: 7043303
    Abstract: Methods are taught to simplify the cochlear implant fitting process for various cochlear prostheses and stimulation strategies, including high rate stimulation strategies. For instance, patient self-programming is made possible. In addition, auto-fitting is made possible (particularly useful for very young patients and other patients for whom it is challenging to obtain feedback) using iso-neural response contours which can be linearly transposed to arrive at iso-loudness contours. Furthermore, M iso-loudness contours (or iso-neural contours) can be linearly transposed to determine T iso-loudness contours. In addition, wider pulse widths can be used to generate an iso-loudness contour whose shape can be used (via linear transposition) to program high-rate, narrow pulse width stimulation.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: May 9, 2006
    Assignee: Advanced Bionics Corporation
    Inventor: Edward H. Overstreet
  • Patent number: 7043304
    Abstract: A method of controlling an implantable neural stimulation system, such as an auditory Fully Implantable System (FIS), uses a first signal path to send signals to the implant device, and a second signal path to receive signals from the implant device. The combination of these two signal paths provides a full-duplex channel between the remote control unit and the implant device through which appropriate control and status signals may be sent and received. In one embodiment, the first signal path comprises an audio signal path through which audio control signals, e.g., a tone sequence or a 32-bit word FSK modulated between 300 and 1200 Hz, are sent; and the second signal path comprises a RF signal path through which a BPSK, QPSK or FM modulated RF signal is received. The full-duplex channel allows operation of the remote control unit, i.e., allows signals to be successfully sent to and received from the implant device, from as far away as 45–60 cm from the implant device.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: May 9, 2006
    Assignee: Advanced Bionics Corporation
    Inventors: Glen A. Griffith, Michael A. Faltys