Abstract: An exemplary sound processor included in a cochlear implant system may include a control facility that represents a first frequency domain signal to a patient by 1) directing a cochlear implant included in the cochlear implant system to apply, during a first stimulation frame, a first monophasic stimulation pulse representative of a first temporal portion of the first frequency domain signal that corresponds to the first stimulation frame, the first monophasic stimulation pulse having a first polarity, and 2) directing the cochlear implant to apply, during a second stimulation frame that is temporally subsequent to the first stimulation frame, a second monophasic stimulation pulse representative of a second temporal portion of the first frequency domain signal that corresponds to the second stimulation frame, the second monophasic stimulation pulse configured to at least partially charge balance the first monophasic stimulation pulse and having a second polarity opposite the first polarity.
Abstract: A system includes an interface assembly and electronic circuitry. The interface assembly is configured to receive DC power and a self-clocking differential signal comprising a data signal encoded with a clock signal at a clock frequency. The electronic circuitry is configured to recover, from the self-clocking differential signal, the data signal and the clock signal at the clock frequency, and to generate, based on the recovered clock signal at the clock frequency, a synthesized clock signal at a carrier frequency. The electronic circuitry is also configured to use the synthesized clock signal to wirelessly transmit, to an implantable stimulator implanted within a recipient, AC power based on the DC power and forward telemetry data based on the recovered data signal. Corresponding systems, methods, and devices are also disclosed.
Abstract: A cochlear implant, for use with a micro camera, including a stimulation assembly, a cochlear lead with an electrode array, a lens associated with the distal region of the electrode array, an optical fiber bundle that extends proximally from the lens and outwardly from the proximal region of the cochlear lead, a camera interface in which the proximal end of the optical fiber bundle is located and that is configured to receive the micro camera, and at least one illumination guide that extends from the camera interface to the cochlear lead.
Type:
Grant
Filed:
March 6, 2019
Date of Patent:
February 1, 2022
Assignee:
Advanced Bionics AG
Inventors:
Martin Grossoehmichen, Konstantin Silberzahn, Tim Nauwelaers, Volkmar Hamacher
Abstract: An exemplary system includes a sound processor configured to wirelessly communicate, while operating in a first mode, with a cochlear implant by way of a wearable headpiece coil configured to be worn on a head of a recipient of the cochlear implant, a non-wearable coil configured to be located away from the recipient, and an interface device configured to provide operating power to the non-wearable coil and communicatively couple to the sound processor while the sound processor is operating in a second mode. While the sound processor is coupled to the interface device and operating in the second mode, the non-wearable coil is configured to provide radio frequency (RF) power to the cochlear implant to keep the cochlear implant listening for commands from the sound processor.
Abstract: An exemplary evoked response measurement system includes a sound processor external to a patient and configured to direct a cochlear implant implanted within the patient to apply electrical stimulation to the patient. The measurement system also includes a headpiece configured to connect to the sound processor by way of a cable, affix to an external surface of a head of the patient, and facilitate wireless communication between the sound processor and the cochlear implant. The measurement system also includes a plurality of conductive contacts communicatively coupled to the sound processor and affixed to the external surface of the head of the patient to detect a signal representative of an evoked response generated by a brain of the patient in response to the electrical stimulation. At least one conductive contact is physically coupled to the headpiece and located between the headpiece and the external surface of the head of the patient.
Abstract: An exemplary self-curling cochlear electrode lead includes a flexible body formed of a flexible insulating material, a shape memory polymer element that is embedded within the flexible body and that is configured to cause the self-curling cochlear electrode lead to transition to a curved spiral shape so as to conform with a curvature of a human cochlea when a temperature of the shape memory polymer element reaches a transition temperature, a plurality of electrode contacts arranged along a side of the flexible body, and a plurality of wires embedded within the flexible body and configured to electrically connect the plurality of electrode contacts to at least one signal source. Corresponding methods of manufacturing a self-curling cochlear electrode lead are also described.
Type:
Grant
Filed:
April 26, 2018
Date of Patent:
November 23, 2021
Assignee:
Advanced Bionics AG
Inventors:
Eric M. Hudak, Anil K. Patnala, Bing Xu, Timothy Lee Conrad, Kurt J. Koester
Abstract: An exemplary electrode lead includes a flexible body formed of a flexible insulating material, an electrode contact disposed on an outer surface of the flexible body, and a strand that includes a first end portion, a second end portion, and a loop that is provided between the first end portion and the second end portion and that protrudes from the flexible body. The loop is configured to engage with a fixing element that is configured to attach the loop to tissue within a recipient to secure the electrode lead within the recipient. Corresponding methods for manufacturing an electrode lead are also described.
Type:
Grant
Filed:
December 3, 2018
Date of Patent:
November 16, 2021
Assignee:
Advanced Bionics AG
Inventors:
Jeryle L. Walter, Enrique Gandaria, Sung Jin Lee, James G. E. Smith
Abstract: A bimodal hearing stimulation system comprises an implantable stimulation assembly for applying neural stimulation to a patient's hearing according to an electrical stimulation signal; an acoustic stimulation unit for applying acoustic stimulation to the patient's hearing according to an acoustic stimulation signal; and a sound processor for generating the electric stimulation signal and the acoustic stimulation signal from an input audio signal. The sound processor is configured to divide the input audio signal into a plurality of frequency bands. The sound processor comprises a weighting unit for dynamically determining for each of the frequency bands a relative loudness weight of the electric stimulation and a relative loudness weight of the acoustic stimulation as a function of the present level of the input audio signal in the respective frequency band. The sound processor is configured to apply the weighting function when generating the electric stimulation signal and the acoustic stimulation signal.
Abstract: An exemplary cochlear implant system includes a cochlear implant configured to be implanted within a patient and a sound processor. The sound processor is configured to receive, from a fitting system during a fitting session, a command that sets an M level to an initial value and a target value for the M level; gradually adjust, subsequent to the fitting session, the M level from the initial value towards the target value in accordance with an adaption time course; and direct the cochlear implant to apply stimulation having the gradually adjusted M level to the patient. Other systems and methods are also disclosed.
Abstract: An apparatus associated with a cochlear implant system used by a patient directs a cochlear implant included within the cochlear implant system and implanted within the patient to generate electrical stimulation current at a predetermined current level. The apparatus further directs the cochlear implant to apply the electrical stimulation current to the patient by way of an electrode coupled with the cochlear implant, and to measure a voltage level associated with the electrode while the electrical stimulation current is applied to the patient by way of the electrode. Based on the predetermined current level and the measured voltage level, the apparatus determines an impedance of the electrode. Based on the determined electrode impedance and in accordance with a predetermined stimulation parameter adjustment constraint, the apparatus automatically adjusts a stimulation parameter associated with the cochlear implant system. Additional apparatuses and corresponding methods are also disclosed.
Type:
Grant
Filed:
February 22, 2018
Date of Patent:
October 5, 2021
Assignee:
Advanced Bionics AG
Inventors:
Roger Calixto, Kanthaiah Koka, Anthony J. Spahr, Mary Elizabeth Bush, Mark B. Downing, Leonid M. Litvak, Amy Stein
Abstract: An antenna apparatus having a first coil including at least one turn on at least one first-coil substrate and a second coil including at least one turn on at least one second-coil substrate. The first and second coils are electrically connected to one another in parallel.
Abstract: A method of forming a cochlear implant electrode array includes positioning contact array assembly, which includes at least one carrier and a plurality of contacts on the at least one carrier, in a mold, removing at least a portion of the at least one carrier from the mold without removing that plurality of contacts from the mold, and introducing resilient material into the mold after the at least a portion of the at least one carrier has been removed to form a flexible body.
Type:
Grant
Filed:
December 1, 2017
Date of Patent:
September 21, 2021
Assignee:
Advanced Bionics AG
Inventors:
Paul Vincent Hoffman, Matthew Vadim Krywcun, Uli Gommel, James George Elcoate Smith
Abstract: A multi-component system includes a first component housing a first conductive pad, a second conductive pad, and a first portion of a loop antenna that terminates on one side at the first conductive pad and on another side at the second conductive pad. The multi-component system further includes a second component housing a third conductive pad, a fourth conductive pad, and a second portion of the loop antenna that terminates on one side at the third conductive pad and on another side at the fourth conductive pad. The second component is distinct from, and configured to detachably couple with, the first component such that the first and third conductive pads, and the second and fourth conductive pads, respectively form first and second non-galvanic couplings that capacitively couple the first and second portions of the loop antenna while the first and second portions of the loop antenna remain galvanically separated.
Abstract: A system includes an interface assembly and electronic circuitry. The interface assembly is configured to receive DC power and a self-clocking differential signal comprising a data signal encoded with a clock signal at a clock frequency. The electronic circuitry is configured to recover, from the self-clocking differential signal, the data signal and the clock signal at the clock frequency, and to generate, based on the recovered clock signal at the clock frequency, a first synthesized clock signal at a first carrier frequency and a second synthesized clock signal at a second carrier frequency. The electronic circuitry is also configured to wirelessly transmit AC power and a data-modulated AC signal to an implantable stimulator implanted within a patient. The AC power is at the first carrier frequency and based on the DC power, while the data-modulated AC signal is at the second carrier frequency and based on the recovered data signal.
Abstract: A device includes a voltage source configured to selectively drive a first wire and a second wire with a first voltage level. The device further includes an adjustable current source configured to selectively discharge the first and second wire. The device further includes a control circuit configured to output data and power by way of the first and second wire by selectively coupling the first wire to the voltage source and the second wire to the adjustable current source such that, during a first time period, the first wire has the first voltage level and the second wire has a second voltage level. The data and power is output by also selectively switching the couplings of the first time period such that, during a second time period subsequent to the first time period, the first wire has the second voltage level and the second wire has the first voltage level.
Type:
Grant
Filed:
January 31, 2020
Date of Patent:
September 7, 2021
Assignee:
Advanced Bionics AG
Inventors:
R. Tissa Karunasiri, Jie Yan, Scott Kenneth Arfin, Don Banh
Abstract: A cochlear including a housing, an antenna, a stimulation processor operably connected to the antenna, and an electrode array, operably connected to the stimulation processor, including a flexible body defining a longitudinal axis, a proximal region and a distal region, a plurality of electrically conductive contacts on the flexible body, and at least one stiffener within the flexible body.
Type:
Grant
Filed:
May 8, 2019
Date of Patent:
August 31, 2021
Assignee:
Advanced Bionics AG
Inventors:
Jeryle L. Walter, James George Elcoate Smith, Uli Gommel, Matthew Vadim Krywcun, Sarah Elizabeth Clabeaux, Nicholas Anthony Wise, Sung Jin Lee
Abstract: A method of forming an electrode array includes the steps of positioning a workpiece on a mold part, compressing the workpiece into the mold part to form a contact, and introducing resilient material into the mold part to form a flexible body.
Type:
Grant
Filed:
August 11, 2016
Date of Patent:
August 31, 2021
Assignee:
Advanced Bionics AG
Inventors:
Matt V. Krywcun, James George Elcoate Smith, Uli Gommel, Martin Sandoval Perez
Abstract: An amplitude shift keying (ASK) modulation system includes a linear regulator circuit powered by input direct current (DC) power at a first voltage level and that generates regulated DC power at a second voltage level tracking the first voltage level. The system also includes an intermediate DC power switching circuit that receives a digital data signal and selectively couples an intermediate power node with the input DC power at the first voltage level when the digital data signal represents a first binary value, and with the regulated DC power at the second voltage level when the digital data signal represents a second binary value. The ASK modulation system also includes a radio frequency (RF) driver circuit powered by intermediate DC power received at the intermediate power node and that delivers RF output power representative of the digital data signal to a load at an RF carrier frequency.
Type:
Grant
Filed:
January 29, 2018
Date of Patent:
August 31, 2021
Assignee:
Advanced Bionics AG
Inventors:
R. Tissa Karunasiri, Scott Kenneth Arfin
Abstract: A cochlear implant exomagnet that includes a magnet apparatus and a magnet mount configured to secure the magnet apparatus to a cochlear implant in such a manner that the magnet apparatus is not located within the internal magnet pocket of the cochlear implant.
Type:
Grant
Filed:
April 10, 2018
Date of Patent:
August 24, 2021
Assignee:
Advanced Bionics AG
Inventors:
James George Elcoate Smith, Sarah Elizabeth Clabeaux