Patents Assigned to Advanced Brain Monitoring, Inc.
  • Publication number: 20110213211
    Abstract: Techniques for monitoring neurophysiologic indicators of the members of a team while performing one or more collaborative tasks, for analyzing the collected neurophysiologic data and environmental data, for generating feedback, and for generating assessments of the performance of the team based on the collected data are provided. Feedback can be created based on the assessments of the team performance. Assessments of team performance can be performed in real time and feedback can also be provided in real time. In other embodiments, feedback can be provided to team members and/or the team as a whole after training exercise and/or simulation has been completed.
    Type: Application
    Filed: December 28, 2010
    Publication date: September 1, 2011
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Ronald H. Stevens, Christine Berka, Adrienne Behneman, Daniel Levendowski
  • Publication number: 20110132378
    Abstract: Systems and methods for controlling the position of a user of a wearable positional therapy device are provided. The wearable position therapy device can be configured to monitor and store physiological signals that can be used to assess sleep quality and sleeping position of a user. The device can be configured to be worn around the head, the neck, or body of the user. The device can be configured to provide feedback to a user if the user is sleeping or is positioned in a target position to induce the user to change positions. The feedback can be provided by one or more haptic motors that can be configured to provide various levels of feedback and the level of feedback can be customized based on the user's reaction to the feedback.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 9, 2011
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Daniel J. Levendowski, Timothy Zavora, Philip R. Westbrook, Mirko Mitrovic, Bratislav Veljkovic, Chris Berka, Jonny Trejo
  • Publication number: 20110105859
    Abstract: Techniques for accelerating training through optimization of the psychophysiological state of the trainee are provided. These techniques include an adaptive performance training system configured to acquire, analyzed, display, and translate data that reflects the psychophysiological state of the user, including the electrical activity of the brain (EEG), the heart (EKG), the musculature (EMG), respiration and other parameters that characterize the state of the user in real-time. The system includes a plurality of feedback mechanisms for providing visual, auditory, and/or tactile feedback based on the current psychophysiological state of the user and for facilitating moving the user toward a goal psychophysiological state for performing a particular task and for optimizing performance of that task.
    Type: Application
    Filed: April 23, 2010
    Publication date: May 5, 2011
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Djordje Popovic, Gene Davis, Chris Berka, Adrienne Behneman, Giby Raphael
  • Publication number: 20100292545
    Abstract: An efficient, objective, flexible and easily deployable system for conducting evaluations of mental and physiological state and recommending individualized treatment to improve said state is described. The method and system are based on commensurate measurement of mental functions, levels of stress and anxiety, and/or biologically active molecules such as neurotransmitters, immune markers including cytokines and hormones. The method and system are designed to assess an individual's cognitive function and the underlying physiology in order to delineate various disease processes, injuries, drug states, training stages, fatigue levels, stress levels, aging processes, predict susceptibility to stress and/or sleep deprivation, identify aptitude for training and/or characterize effects of any experimental conditions.
    Type: Application
    Filed: May 14, 2009
    Publication date: November 18, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Chris Berka, Daniel J. Levendowski, Philip R. Westbrook, Gene Davis, Robin Johnson, Djordje Popovic
  • Publication number: 20100268096
    Abstract: A method and apparatus for assessment of hemodynamic and functional state of the brain is disclosed. In one embodiment, the method and apparatus includes non-invasive measurement of intracranial pressure, assessment of the brain's electrical activity, and measurement of cerebral blood flow. In some embodiments, the method and apparatus include measuring the volume change in the intracranial vessels with a near-infrared spectroscopy or other optical method, measuring the volume change in the intracranial vessels with rheoencephalography or other electrical method, and measuring the brain's electrical activity using electroencephalography.
    Type: Application
    Filed: February 4, 2010
    Publication date: October 21, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Chris Berka, Daniel J. Levendowski, Djordje Popovic, Philip R. Westbrook
  • Publication number: 20100240982
    Abstract: Systems and methods for assessment of sleep quality in adults and children are provided. These techniques include an apparatus worn above the forehead containing the circuitry for collecting and storing physiological signals. The apparatus integrates with a sensor strip and a nasal mask to obtain the physiological signals for the user. The form factor of this apparatus is comfortable, easy to self-apply, and results in less data artifacts than conventional techniques for capturing physiological data for analyzing sleep quality. Neuro-respiratory signals are analyzed using means to extract more accurate definitions of the frequency and severity of sleep discontinuity, sleep disordered breathing and patterns of sleep architecture. Biological biomarkers and questionnaire responses can also be compared to a database of healthy and chronically diseased patients to provide a more accurate differential diagnosis and to help determine the appropriate disease management recommendations.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 23, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Gene Davis, Djordje Popovic, Chris Berka, Mirko Mitrovic, Bratislav Veljkovic
  • Publication number: 20100145201
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Application
    Filed: February 18, 2010
    Publication date: June 10, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Publication number: 20100087701
    Abstract: Systems and methods for optimizing the sleep and post-sleep performance of individuals regardless of their environment and time available for sleep are provided. The systems and methods take into account factors that determine the effects of a sleep episode on dexterity, cognitive functions and the subjective feeling of fatigue after sleeping: duration and sleep architecture of the sleep episode, point on the circadian cycle at which the episode occurred, the amount of sleep debt accumulated prior to the episode and the subject's susceptibility to sleep deprivation. The systems and methods include monitoring of sleep architecture over a longer period of time, measurement of accumulated sleep debt and assessment and/or tailoring of the sleep architecture for each subsequent sleep episode, determining a desired sleep state in which the subject should be in, and generating sensory stimuli for guiding the subject to the desired sleep state.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Chris Berka, Djordje Popovic, Gene Davis, Matthew A. Yanagi
  • Patent number: 7691067
    Abstract: Photoplethysmography (PPG) is obtained using one red (e.g., 660 nm) and one infrared (e.g., 880 to 940 nm) light emitting diode with a single photo diode in combination with a pressure transducer thereby allowing both CVP and SpO2 to be measured simultaneously. The system also includes sensors capable of measuring position, angle and/or movement of the sensor or patient. Once the PPG signal is acquired, high pass adaptive and/or notch filtering can be used with one element of the filter from the red and infrared signals used to measure the arterial changes needed to compute SpO2 and the other element of the signal can be used to measure CVP changes.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 6, 2010
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Philip R. Westbrook, Daniel J. Levendowski, Timothy Zavora, Djordje Popovic, Milenko Cvetinovic, Chris Berka
  • Publication number: 20080146893
    Abstract: A system for predicting risk for perioperative complications is described including a user device for receiving a set of risk factors to determine perioperative complications for a patient including patient data useful to determine the likelihood of obstructive sleep apnea. The system also includes an acquisition module to receive data from an obstructive sleep apnea sleep study of the patient. Further a determination module can determine the severity of obstructive sleep apnea for the patient. The system can also include an analysis module having a predictive model that incorporates one or more prediction equations for predicting perioperative complications derived from one or more databases having multiple patient data relevant to predict perioperative complications.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 19, 2008
    Applicant: ADVANCED BRAIN MONITORING, INC.
    Inventors: Daniel J. Levendowski, Philip R. Westbrook, Chris Berka
  • Patent number: 6640122
    Abstract: The EEG electrode and EEG electrode locator assembly may be used in combination with an EEG electrode locator headgear including a plurality of locator straps connectable to one or more of the EEG electrode locators that form an electrode locator assembly with the EEG electrode, for accurately positioning one or more of the EEG electrodes relative to the user's scalp, and for biasing the plurality of electrodes toward the user's scalp. The EEG electrode is adapted to be received in and cooperate with an EEG electrode locator ring, to form the electrode locator assembly. The EEG electrode includes a dispenser assembly adapted to dispense an electrically conductive gel onto the user's scalp to prepare the user's scalp.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: October 28, 2003
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Samir Manoli, Daniel J. Levendowski, Eugene F. Davis, Christine Berka
  • Patent number: 6625485
    Abstract: The method for the quantification of EEG waveforms along the alertness continuum involves collecting and transforming EEG signal data, identifying and rejecting or decontaminating epochs containing various artifacts, and classifying individual EEG patterns along an alertness-drowsiness continuum. The results of the multi-level classification system are applied in real-time to provide feedback to the user via an audio or visual alarm, or are recorded for subsequent off-line analysis.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: September 23, 2003
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Daniel J. Levendowski, Zoran R. Konstantinovic, Richard Olmstead, Christine Berka
  • Patent number: 6496724
    Abstract: The method for the quantification of EEG waveforms along the alertness continuum involves collecting and transforming EEG signal data, identifying and rejecting or decontaminating epochs containing various artifacts, and classifying individual EEG patterns along an alertness-drowsiness continuum. The results of the multi-level classification system are applied in real-time to provide feedback to the user via an audio or visual alarm, or are recorded for subsequent off-line analysis.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: December 17, 2002
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Daniel J. Levendowski, Zoran R. Konstantinovic, Richard Olmstead, Christine Berka
  • Patent number: 6381481
    Abstract: The EEG electrode locator headgear allows the user to locate and apply disposable EEG electrodes accurately according to the International 10/20 System without technical assistance, to allow the acquisition of high quality EEG signals. The headgear includes a front forehead pad, a base strap assembly connected to the front forehead pad, a plurality of EEG electrode locators for receiving EEG electrodes, and a plurality of locator straps connected to the front pad of material, the base strap assembly, and to the plurality of EEG electrode locators for accurately positioning the plurality of EEG electrode locators positioned relative to the scalp of a user. A visor can be attached to the front pad of material, and the base strap assembly may include an occipital locator device. A plunger assembly with spreadable fingers for optionally parting the hair of the user's scalp is also provided that is inserted in the electrode locators to optionally prepare the user's scalp and to seat the electrodes.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 30, 2002
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Daniel J. Levendowski, Christine Berka, Zoran R. Konstantinovic
  • Patent number: 6161030
    Abstract: The EEG electrode locator headgear allows the user to locate and apply disposable EEG electrodes accurately according to the International 10/20 System without technical assistance, to allow the acquisition of high quality EEG signals. The headgear includes a front forehead pad, a base strap assembly connected to the front forehead pad, a plurality of EEG electrode locators for receiving EEG electrodes, and a plurality of locator straps connected to the front pad of material, the base strap assembly, and to the plurality of EEG electrode locators for accurately positioning the plurality of EEG electrode locators positioned relative to the scalp of a user. A visor can be attached to the front pad of material, and the base strap assembly may include an occipital locator device. A plunger assembly with spreadable fingers for parting the hair of the scalp of the user is also provided that is inserted in the electrode locators to prepare the scalp of the user and to seat the electrodes.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: December 12, 2000
    Assignee: Advanced Brain Monitoring, Inc.
    Inventors: Daniel J. Levendowski, Christine Berka, Zoran R. Konstantinovic