Abstract: The invention provides a method for effecting the de-differentiation of a somatic cell by culturing the cell in the absence of growth factors, cytokines, or other differentiation-inducing agents, and introducing components of cytoplasm of plutipotent cells into the somatic cell and allowing the cell to de-differentiate. The method can be used with somatic cells of any type, from any species of animal. The pluripotent cells may be oocytes, blastomeres, inner cell mass cells, embryonic stem cells, embryonic germ cells, embryos consisting of one or more cells, embryoid body (embryoid) cells, moruia-derived cells, teratoma (teratocarcinoma) cells, as well as multipotent partially differentiated embryonic stem cells taken from later in the embryonic development process. After being de-differentiated, the cell can be induced to re-differentiate into a different somatic cell type. A method for de-differentiating a somatic cell and inducing it to re-differentiate into a cell of neural lineage is disclosed.
Abstract: This invention includes methods for producing non-human mammals expressing monoclonal or oligoclonal B or T lymphocytes, as well as embryonic and hematopoietic stem cells that differentiate into monoclonal or oligoclonal B or T cells, using cloning by nuclear transfer with a B or T cell of interest as the nuclear donor cell.
Abstract: The invention provides a method for effecting the de-differentiation of a somatic cell by culturing the cell in the absence of growth factors, cytokines, or other differentiation-inducing agents, and introducing components of cytoplasm of plutipotent cells into the somatic cell and allowing the cell to de-differentiate. The method can be used with somatic cells of any type, from any species of animal. The pluripotent cells may be oocytes, blastomeres, inner cell mass cells, embryonic stem cells, embryonic germ cells, embryos consisting of one or more cells, embryoid body (embryoid) cells, morula-derived cells, teratoma (teratocarcinoma) cells, as well as multipotent partially differentiated embryonic stem cells taken from later in the embryonic development process. After being de-differentiated, the cell can be induced to re-differentiate into a different somatic cell type. A method for de-differentiating a somatic cell and inducing it to re-differentiate into a cell of neural lineage is disclosed.
Abstract: Improved methods of cell therapy are provided using cells and tissues that are histocompatible with a human or non-human mammal transplant recipient. The cells and tissues for transplant produced by the present invention exhibit a youthful state and can be committed to specific cell lineages to better infiltrate and proliferate at a desired target, e.g., a tissue, or organ in need of cell replacement therapy. For providing cells and tissues for transplant to a non-human mammal, the cells and tissues can be isolated from a gastrulating embryo produced by same-species nuclear transfer. Histocompatible cells and tissues for transplant to a human can be isolated from a gastrulating embryo that (i) is genetically modified to be in capable of developing beyond and early stage, or (ii) is produced by cross-species nuclear transfer between a human nuclear donor cell and an enucleated recipient cell, e.g.
Abstract: Tissues produced by culture of cells produced by nuclear transfer on a matrix derived from nuclear transfer embryos or embryos and pluripotent cells provided by other methods are provided. These tissues are useful for cell therapy.
Abstract: An improved method of producing differentiated progenitor cells comprising obtaining inner cell mass cells from a blastocyst and inducing differentiation of the inner cell mass cells to produce differentiated progenitor cells. The differentiated progenitor cells may be transfected such that there is an addition, deletion or alteration of a desired gene. The differentiated progenitor cells are useful in cell therapy and as a I source of cells for the production of tissues and organs for transplantation. Also provided is a method of producing a lineage-defective human embryonic stem cell.
Type:
Application
Filed:
December 29, 2004
Publication date:
December 1, 2005
Applicant:
Advanced Cell Technology, Inc.
Inventors:
Jose Cibelli, Michael West, Robert Lanza
Abstract: The invention is concerned with producing differentiated cells, tissues and organs from pluripotent and mutlipotent cells. The methods of the invention are particularly useful for producing differentiated cells from pluripotent cells wherein communication between the cells of more than one embryonic germ layer or more than one organ system are required for development along a specific cell lineage. The invention methods are effected by in vivo or in vitro culturing of embryonic and developing or developed allogeneic or xenogeneic cells.
Abstract: This invention relates to methods for making immune compatible tissues and cells for the purpose of transplantation and tissue engineering, using the techniques of nuclear transfer and cloning. Also encompassed are methods for determining the effect on immune compatibility of expressed transgenes and other genetic manipulations of the engineered cells and tissues.
Type:
Grant
Filed:
September 6, 2000
Date of Patent:
October 26, 2004
Assignee:
Advance Cell Technology, Inc.
Inventors:
Robert Lanza, Michael D. West, Jose Cibelli
Abstract: Methods and cell lines for cloning ungulate embryos and offspring, in particular bovines and porcines, are provided. The resultant fetuses, embryos or offspring are especially useful for the expression of desired heterologous DNAs, and may be used as a source of cells or tissue for transplantation therapy for the treatment of diseases such as Parkinson's disease.
Type:
Application
Filed:
March 21, 2003
Publication date:
June 24, 2004
Applicant:
Advanced Cell Technology, Inc.
Inventors:
Steven Stice, Jose Cibelli, James M. Robl, Paul Golueke, F. Abel Ponce de Leon, D. Joseph Jerry