Patents Assigned to Advanced Ion Beam Technology, Inc.
  • Publication number: 20130187349
    Abstract: A scan head assembled to a scan arm for an ion implanter and a scan arm using the same are provided, wherein the scan head is capable of micro tilting a work piece and comprises a case, a shaft assembly, an electrostatic chuck, a first driving mechanism and a micro-tilt mechanism. The shaft assembly passes through a first side of the case and has a twist axis. The electrostatic chuck is fastened on a first end of the shaft assembly outside the case for holding the work piece. The first driving mechanism is disposed within the case and capable of driving the shaft assembly and the ESC to rotate about the twist axis. The micro-tilt mechanism is disposed within the case and capable of driving the shaft assembly and the ESC to tilt relative to the case.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: ADVANCED ION BEAM TECHNOLOGY, INC.
  • Publication number: 20130130484
    Abstract: An ion implanter and an ion implant method are disclosed. Essentially, the wafer is moved along one direction and an aperture mechanism having an aperture is moved along another direction, so that the projected area of an ion beam filtered by the aperture is two-dimensionally scanned over the wafer. Thus, the required hardware and/or operation to move the wafer may be simplified. Further, when a ribbon ion beam is provided, the shape/size of the aperture may be similar to the size/shape of a traditional spot beam, so that a traditional two-dimensional scan may be achieved. Optionally, the ion beam path may be fixed without scanning the ion beam when the ion beam is to be implanted into the wafer, also the area of the aperture may be adjustable during a period of moving the aperture across the ion beam.
    Type: Application
    Filed: January 21, 2013
    Publication date: May 23, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: ADVANCED ION BEAM TECHNOLOGY, INC.
  • Publication number: 20130057250
    Abstract: Techniques for measuring ion beam current, especially for measuring low energy ion beam current, are disclosed. The technique may be realized as an ion beam current measurement apparatus having at least a planar Faraday cup and a voltage assembly. The planar Faraday cup is located close to an inner surface of a chamber wall, and intersects an ion beam path. The voltage assembly is located outside a chamber having the chamber wall. Therefore, by properly adjusting the electric voltage applied on the planar Faraday cup by the voltage assembly, some undesired charged particles may be adequately suppressed. Further, the planar Faraday cup may surround an opening of an additional Faraday cup being any conventional Faraday cup. Therefore, the whole ion beam may be received and measured well by the larger cross-section area of the planar Faraday cup on the ion beam path.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Peter M. KOPALIDIS, Zhimin WAN
  • Publication number: 20130026722
    Abstract: A chuck assembly has a wafer chuck attached to a shaft that has a passage defined therewithin. The chuck assembly also has a seal module that has a rotatable assembly and a fixed assembly. The rotatable assembly is disposed around and anchored to the shaft and has a spacer, a rotatable collar, a rotatable diaphragm, and a rotatable seal ring connected to the rotatable collar through the diaphragm with a leak-tight seal. The fixed assembly is disposed around the spacer and has a fixed collar and a fixed seal ring that is sealed to the fixed collar with a leak-tight seal. The fixed collar has a passage defined therewithin that has an opening that connects through the spacer to the passage defined within the shaft. The chuck assembly further includes a housing, to which the fixed assembly is fastened, that may be affixed to a base.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC
    Inventor: Richard F. MCRAY
  • Publication number: 20130026539
    Abstract: A finFET is formed having a fin with a source region, a drain region, and a channel region between the source and drain regions. The fin is etched on a semiconductor wafer. A gate stack is formed having an insulating layer in direct contact with the channel region and a conductive gate material in direct contact with the insulating layer. The source and drain regions are etched leaving the channel region of the fin. Epitaxial semiconductor is grown on the sides of the channel region that were adjacent the source and drain regions to form a source epitaxy region and a drain epitaxy region. The source and drain epitaxy regions are doped in-situ while growing the epitaxial semiconductor.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Daniel TANG, Tzu-Shih Yen
  • Publication number: 20130001433
    Abstract: The invention provides a method to real time monitor the ion beam. Initially, turn on an ion implanter which has a wafer holder, a Faraday cup and a measurement device positioned close to a special portion of a pre-determined ion beam path of the ion beam, wherein the Faraday cup is positioned downstream the wafer holder and the measurement device is positioned upstream the wafer holder. Then, measure a first ion beam current received by the Faraday cup and a second ion beam current received by the measurement device. By continuously measuring the first and second ion beam current, the ion beam is real-time monitored even the Faraday cup is at least partially blocked during the period of moving the wafer holder across the ion beam. Accordingly, the on-going implantation process and the operation of the implanter can be adjusted.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Wei-Cheng LIN, ZHIMIN WAN
  • Publication number: 20120317993
    Abstract: An atmospheric controlled chamber includes a support assembly capable of holding a workpiece over a specific surface of the support assembly, a heat-transfer assembly located close to the support assembly and capable of transferring heat to and from the exterior of the chamber, and at least one thermopile device disposed in the support assembly. The thermopile device(s) is configured to transfer heat between the specific surface (or viewed as the held workpiece) and the heat-transfer assembly. A gas assembly is optionally surrounded by the chamber wall and capable of ensuring the existence and controlling the pressure of an essentially static gas between the held workpiece and the specific surface, wherein the gas is used as a thermal medium for conducting heat. The thermopile device acts as an efficient heat pump, so as to provide extra lower/higher workpiece temperature, a greater cooling/heating rates, and more flexible rate control.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: RICHARD F. MCRAY
  • Patent number: 8334517
    Abstract: Apparatus and method for adjusting an ion beam between a mass analyzer and a substrate holder. Herein, one or more bended, such as arch-shaped, curved or zigzag shaped, bar magnets are configured to apply one or more magnetic fields to adjust the shape or cross section of an ion beam passing through a space partially surrounded by the one or more bended bar magnets. At least one of the gap width between neighbor bended bar magnets, the curvature of each bended bar magnet and the current flowing through each bended bar magnet may be fixed or adjusted dependently or independently. Therefore, the Lorentz force applied on the ion beam along different directions may be changed in a desired manner, and then the ion beam may be flexibly elongated, compressed or shaped to meet the process requirement.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: December 18, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Ko-Chuan Jen, Zhimin Wan
  • Publication number: 20120281333
    Abstract: The invention is directed to a temperature-controllable electrostatic chuck having a heat-transfer body, one or more electrodes and one or more thermopile devices. The heat-transfer body transfers heat between the interior of the electrostatic chuck and the exterior of the electrostatic chuck via a heat-transfer assembly with heat-transfer fluid circulated to and from an external chiller. The one or more thermopile devices are in series between the heat-transfer body and a top surface of the electrostatic chuck, so that heat may be further transferred between a workpiece held on the top surface and the heat-transfer body. Accordingly, because the workpiece temperature may be adjusted by both the external chiller and the thermopile devices, the workpiece temperature may be further lowered when the cold sides of the thermopile device face the workpiece. Otherwise, the workpiece temperature may be further elevated when the hot sides of the thermopile device face the workpiece.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: RICHARD F. MCRAY
  • Patent number: 8304330
    Abstract: Techniques for low temperature ion implantation are provided to improve the throughput. During a low temperature ion implantation, an implant process may be started before the substrate temperature is decreased to be about to a prescribed implant temperature by a cooling process, and a heating process may be started to increase the substrate temperature before the implant process is finished. Moreover, one or more temperature adjust process may be performed during one or more portion of the implant process, such that the substrate temperature may be controllably higher than the prescribe implant temperature during the implant process.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: November 6, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: John D. Pollock, Zhimin Wan, Erik Collart
  • Publication number: 20120196047
    Abstract: To select a relative velocity profile to be used in scanning an actual work piece with an ion implant beam of an ion implantation tool, the implantation of a virtual work piece is simulated. A dose distribution is calculated across the virtual work piece based on an implant beam profile and a relative velocity profile. A new relative velocity profile is then determined based on the calculated dose distribution and the relative velocity profile used in calculating the dose distribution. A new dose distribution is then calculated using the new relative velocity profile. A new relative velocity profile is determined and a corresponding new dose distribution is calculated iteratively until the new dose distribution meets one or more predetermined criteria. The new relative velocity profile is stored as the selected relative velocity profile when the new dose distribution meets the one or more predetermined criteria.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 2, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Cheng-Hui Shen, Zhimin Wan
  • Publication number: 20120187290
    Abstract: Apparatus and method for adjusting an ion beam between a mass analyzer and a substrate holder. Herein, one or more bended, such as arch-shaped, curved or zigzag shaped, bar magnets are configured to apply one or more magnetic fields to adjust the shape or cross section of an ion beam passing through a space partially surrounded by the one or more bended bar magnets. At least one of the gap width between neighbor bended bar magnets, the curvature of each bended bar magnet and the current flowing through each bended bar magnet may be fixed or adjusted dependently or independently. Therefore, the Lorentz force applied on the ion beam along different directions may be changed in a desired manner, and then the ion beam may be flexibly elongated, compressed or shaped to meet the process requirement.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: KO-CHUAN JEN, ZHIMIN WAN
  • Patent number: 8211784
    Abstract: A semiconductor device has at least two main carbon-rich regions and two additional carbon-rich regions. The main carbon-rich regions are separately located in a substrate so that a channel region is located between them. The additional carbon-rich regions are respectively located underneath the main carbon-rich regions. The carbon concentrations is higher in the main carbon-rich regions and lower in the additional carbon-rich regions, and optionally, the absolute value of a gradient of the carbon concentration of the bottom portion of the main carbon-rich regions is higher than the absolute value of a gradient of the carbon concentration of the additional carbon-rich regions. Therefore, the leakage current induced by a lattice mismatch effect at the carbon-rich and the carbon-free interface can be minimized.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 3, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Jason Hong, Daniel Tang
  • Patent number: 8198610
    Abstract: An ion implanter and an ion implant method are disclosed. The ion implanter has an aperture assembly with a variable aperture and is located between an ion source of an ion beam and a holder for holding a wafer. At least one of the size and the shape of the variable aperture is adjustable. The ion beam may be flexibly shaped by the variable aperture, so that the practical implantation on the wafer can be controllably adjusted without modifying an operation of both the ion source and mass analyzer or applying a magnetic field to modify the ion beam. An example of the aperture assembly has two plates, each having an opening formed on its edge such that a variable aperture is formed by a combination of these openings. By respectively moving the plates, the size and the shape of the variable aperture can be changed.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: June 12, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventor: Richard F. McRay
  • Publication number: 20120126137
    Abstract: An ion implantation method and an ion implanter with a beam profiler are proposed in this invention. The method comprises setting scan conditions, detecting the ion beam profile, calculating the dose profile according to the detected ion beam profile and scan conditions, determining the displacement for ion implantation and implanting ions on a wafer surface. The ion implanter used the beam profiler to detect the ion beam profile, calculate dose profile and determine the displacement and used the displacement in ion implantation for optimizing, wherein the beam profiler comprises a body with ion channel and detection unit behind the ion channel in the body for beam profile detection. The beam profiler may be a 1-dimensional, 2-dimensional or angle beam profiler.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 24, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: CHENG-HUI SHEN
  • Publication number: 20120115318
    Abstract: Techniques for low temperature ion implantation are provided to improve the throughput. During a low temperature ion implantation, an implant process may be started before the substrate temperature is decreased to be about to a prescribed implant temperature by a cooling process, and a heating process may be started to increase the substrate temperature before the implant process is finished. Moreover, one or more temperature adjust process may be performed during one or more portion of the implant process, such that the substrate temperature may be controllably higher than the prescribe implant temperature during the implant process.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: JOHN D. POLLOCK, ZHIMIN WAN, ERIK COLLART
  • Patent number: 8168962
    Abstract: Initially, an ion beam is formed as an elongated shape incident on a wafer, where the shape has a length along a first axis longer than a diameter of the wafer, and a width along a second axis shorter than the diameter of the wafer. Then, a center of the wafer is moved along a scan path intersecting the ion beam at a movement velocity, and the wafer is rotated around at a rotation velocity simultaneously. During the simultaneous movement and rotation, the wafer is totally overlapped with the ion beam along the first axis when the wafer intersects with the ion beam, and the rotation velocity is at most a few times of the movement velocity. Both the movement velocity and the rotation velocity can be a constant or have a velocity profile relative to a position of the ion beam across the wafer.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: May 1, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Cheng-Hui Shen, Don Berrian
  • Publication number: 20120097861
    Abstract: A deceleration apparatus capable of decelerating a short spot beam or a tall. ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 26, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Nicholas White, Zhimin Wan, Erik Collart
  • Patent number: 8164879
    Abstract: A method and an apparatus for dechucking an electrostatic chuck are disclosed. The gas escapes through an opening between a wafer and a chuck in each stage of a multi-stages process. In each stage, during at least a portion of the stage, the chucking voltage is reduced to a value less than the least threshold voltage needed for holding the wafer, so that the wafer is pushed away from the chuck by the gas. Hence, the gas can escape from an opening between the wafer and the chuck, thereby increasing the dechucking rate. By controlling the decrement and/or the duration of the reduced voltage, any potential damages due to the pushed-away wafer can be minimized.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: April 24, 2012
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Terry Sheng, Peter Mok, Jason Hong, Steven Fong, Gongyuan Qu
  • Publication number: 20120085936
    Abstract: A method capable of monitoring ion implantation. First, an ion beam and a workpiece are provided. Next, implant the workpiece by the ion beam and generate a profile having numerous signals relevant to respectively numerous relative positions between the ion beam and the workpiece, wherein the profile has at least a higher portion, a gradual portion and a lower portion. Therefore, by directly analyzing the profile without referring to a pre-determined profile and without using a profiler measuring the ion beam, some ion beam information may be acquired, such as beam height, beam width, ion beam current distribution on the ion beam cross-section, and so on, and the ion implantation may be monitored real-timely. Furthermore, when numerous workpieces are implanted in sequence, the profile(s) of one or more initially implanted workpiece(s) may be to generate a reference for calibrating the ion implantation of the following workpieces.
    Type: Application
    Filed: October 8, 2010
    Publication date: April 12, 2012
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: DON BERRIAN, CHENG-HUI SHEN