Abstract: A silver-containing ink includes an aqueous carrier medium having both a silver salt and an amine sensitizer for the silver salt dissolved therein, and a light sensitive reducing agent dispersed in the aqueous carrier medium. The amine sensitizer includes at one or more amine group; and the light sensitive reducing agent is capable of reducing the silver in the silver-containing ink to silver particles when irradiated.
Abstract: A one layer building panel derives its structural integrity from a foam forming the layer that bonds to horizontal and vertical stud members with a mesh material disposed therein. The vertical members can be provided at the edges of the building panel. The horizontal members can be provided at the edges of the building panel and together with the vertical member form a peripheral frame for the building panel. The foam is bonded to the horizontal and vertical stud members using above ambient temperatures and pressures. Building panels can be connected to one another to construct a building wall and ceiling using stud members having an interlocking capabilities. The building panels can be inserted into tracks secured to a floor using anchors.
Abstract: An exemplary ink for forming electrical traces includes an aqueous carrier medium, a palladium salt and a reducing agent. The palladium salt is capable of being dissolved in the aqueous carrier medium. The reducing agent is configured for reducing the palladium ions into palladium particles under an irradiation ray.
Abstract: An insulating film includes a first polymer layer, a second polymer layer and an electromagnetic shielding layer sandwiched between the first polymer layer and the second polymer layer. The electromagnetic shielding layer includes a number of carbon nanotube films that are substantially parallel to the first and second polymer layer. Each of the carbon nanotube films includes a number of carbon nanotubes that are substantially parallel to each other. The insulating film can provide anti-EMI effect in printed circuit boards without employing additional electromagnetic shielding layers.
Abstract: A printed circuit board substrate includes a metal-clad substrate and a number of N spaced circuit substrates arranged on the metal-clad substrate along an imaginary circle, N is a natural number greater than 2. The circuit substrates are equiangularly arranged about the center of the circle, and each of the circuit substrates is oriented 360/N degrees with respect to a neighboring printed circuit board.
Type:
Application
Filed:
December 10, 2008
Publication date:
October 22, 2009
Applicant:
FOXCONN ADVANCED TECHNOLOGY INC.
Inventors:
PAI-HUNG HUANG, CHIH-KANG YANG, CHENG-HSIEN LIN
Abstract: A printed circuit board includes a substrate having a surface, a circuit layer having a plurality of electrical traces formed on the surface, and an electrically conductive metal layer formed on the circuit layer. The circuit layer is comprised of a composite of carbon nano-tubes and metallic nano-particles.
Abstract: A method of forming a circuit on a circuit board includes the steps of: forming a first circuit pattern made of a nano-scale metal oxide material on a surface of an insulating substrate; reducing the nano-scale metal oxide material into a nano-scale deoxidized metal material, thus obtaining a second circuit pattern; and forming an electrically conductive metal layer on the second circuit pattern.
Abstract: A method for manufacturing a printed circuit board (PCB) having different thicknesses in different areas includes: providing a first substrate having two lateral unwanted portions bounded two imaginary boundary lines, a binder layer having a through opening and a second substrate having a mounting area for mounting electronic elements; forming two slots bounded the imaginary boundary lines in an intermediated unwanted portion of the first substrate corresponding to the mounting area; laminating the first and second substrates, and the binder layer with the mounting area exposed via the through opening; filling the two slots and the through opening with a filling material, thereby obtaining a semifinished PCB board; cutting the semifinished PCB board along the imaginary boundary lines to remove the two lateral unwanted portions and a portion of the second substrate corresponding to the two lateral unwanted portions; and removing the intermediate unwanted portion and the filling material.
Abstract: An ultrasonic waterjet apparatus (10) has a mobile generator module (20) and a high-pressure water hose (40) for delivering high-pressure water from the mobile generator module (20) to a hand-held gun (50) with a trigger and an ultrasonic nozzle (60). An ultrasonic generator in the mobile generator module (20) transmits high-frequency electrical pulses to a piezoelectric or magnetostrictive transducer (62) which vibrates to modulate a high-pressure waterjet flowing through the nozzle (60). The waterjet exiting the ultrasonic nozzle (60) is pulsed into mini slugs of water, each of which imparts a waterhammer pressure on a target surface. The ultrasonic waterjet apparatus (10) may be used to cut and de-burr materials, to clean and de-coat surfaces, and to break rocks. The ultrasonic waterjet apparatus (10) performs these tasks with much greater efficiency than conventional continuous-flow waterjet systems because of the repetitive waterhammer effect.
Type:
Grant
Filed:
November 3, 2003
Date of Patent:
September 29, 2009
Assignee:
VLN Advanced Technologies, Inc.
Inventors:
Mohan M. Vijay, Wenzhuo Yan, Andrew Tieu, Baolin Ren
Abstract: A spark management device includes a high voltage power source and a detector configured to monitor a parameter of an electric current provided to a load device. In response to the parameter, a pre-spark condition is identified. A switching circuit is responsive to identification of the pre-spark condition for controlling the electric current provided to the load device so as to manage sparking including, but not limited to, reducing, eliminating, regulating, timing, and/or controlling any intensity of arcs generated.
Type:
Grant
Filed:
August 30, 2005
Date of Patent:
September 29, 2009
Assignee:
Kronos Advanced Technologies, Inc.
Inventors:
Igor A. Krichtafovitch, Vladimir L. Gorobets
Abstract: A method for manufacturing a printed circuit board (PCB) includes: providing a first PCB substrate, a second PCB substrate and an adhesive layer, the first PCB substrate having a first main portion and a first unwanted portion divided by a first imaginary boundary, the second PCB substrate including a second main portion and a second unwanted portion divided by a second imaginary boundary; forming an opening in the adhesive layer; filling an filling mass in the opening; laminating the first PCB substrate, the second PCB substrate and the adhesive layer such that the adhesive layer is sandwiched between the first PCB substrate and the second PCB substrate, and the first, second imaginary boundaries are misaligned, a projection of each of the first and second imaginary boundaries in the adhesive layer being within the opening; and cutting the first and second PCB substrates along the first and second imaginary boundaries respectively.
Abstract: An information-theoretic method clusters and merges bi-variate normal data or ‘error ellipses’ lying in a plane. Two or more error ellipses are clustered and then merged into a single error ellipse if the information lost in the merging process is sufficiently small. This criterion is numerically implemented and tested in a code developed for this purpose.
Abstract: Disclosed are processes whereby stains on a variety of substrates may be removed by treating a stained area of a substrate with a solution of a sulfonamide compound. The sulfonamide-containing solutions are particularly useful as stain removal agents for stains which originate with body fluids such as blood, urine, vomit, feces etc. The stain removal solutions may be buffered to a predetermined pH. The stain removal solutions may further incorporate small percentages of low molecular weight alcohols and wetting agents.
Type:
Application
Filed:
March 9, 2009
Publication date:
September 10, 2009
Applicant:
Schneider Advanced Technologies, Inc.
Inventors:
David J. Schneider, Charles A. Schneider
Abstract: A structural supporting roof pillar for use in a vehicle including an elongated, interiorly hollowed and polygonal shaped body having a selected arcuate lengthwise configuration and corresponding in placement to at least one of an A, B, and C vehicle pillar. A first component supporting flange is integrally formed, such as by overlapping end portions of a roll formed body, and projecting in at least a partially lengthwise extending fashion from a given cross sectional location. A secondary component supporting flange is affixed to a further cross sectional location associated with the body, such as further by welding.
Abstract: In this present invention, a method for forming solder lumps on printed circuit board (PCB) substrate is provided. A PCB substrate including a number electrical traces and solder pads formed on a substrate surface thereof is provided. A liquid photoresist is applied onto the PCB substrate such that a photoresist layer defining a number of openings thereof is formed and each of the solder pads is exposed via each of the openings. A solder masses are filled into each of the openings. The solder masses are reflowed and the photoresist layer is removed.
Abstract: A method for manufacturing a multilayer FPCB includes the steps of: providing a first copper clad laminate, a second copper clad laminate and a binder layer; defining an opening on the binder layer; defining a first slit on the first copper clad laminate; laminating the first copper clad laminate, the binder layer and the second copper clad laminate; defining a via hole for establishing electric connection between the first copper clad laminate and the second copper clad laminate; cutting the first copper clad laminate, the binder layer and the second copper clad laminate thereby forming a multilayer flexible printed circuit board having different numbers of layers in different areas.
Abstract: A broadband transmission line impedance transformer performs impedance transformation with improved frequency response and efficiency across a wide operational bandwidth. In particular, the bandwidth of a transmission line 2:1 impedance transformer may be significantly increased by adding an additional compensating capacitor as an internal component between interconnected transmission lines. This capacitor effectively improves low frequency response for a given length of transmission lines and decreases mismatch in an entire frequency range. The overall bandwidth ratio increases at least twice and mismatch decreases.
Abstract: A stiffener sheet for flexible printed flexible printed circuit boards, includes alternately laminated polyimide layers and polyamideimide layers, wherein a molecular structure of the polyamideimide is represented by the following formula: wherein Ar and Ar? represents different substituted aromatic groups.
Abstract: A method for manufacturing a rigid-flexible printed circuit boards includes following steps. Firstly, a flexible substrate is provided. Secondly, at least one slit is defined in the flexible substrate. Thirdly, a rigid substrate having a structure corresponding to the flexible substrate is provided. Fourthly, the flexible substrate is laminated to the rigid substrate to obtain a laminated substrate. Fifthly, part of the rigid substrate is removed. Sixthly, the laminated substrate is cut along an imaginary boundary line to remove waste portion of the laminated substrate. Thus, a rigid-flexible printed circuit board is obtained.
Abstract: A method for forming circuit in making a printed circuit board includes the following steps. A patterned photoresist layer is formed on a surface of an insulating substrate such that a first portion of the surface of the insulating substrate is exposed and a second portion of the surface of the insulating substrate is covered by the patterned photoresist layer. An electrically conductive layer is deposited on the first portion of the surface of the insulating substrate so as to obtain a circuit formed on the surface of the insulating substrate. The patterned photoresist layer is removed from the surface second portion of the surface of the insulating substrate.