Patents Assigned to Advanced Technology Materials
  • Patent number: 8877549
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 4, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Publication number: 20140305079
    Abstract: A method for removing headspace gas from a liner-based assembly. The liner-based assembly may generally include an overpack, a liner positioned within the overpack and containing a material and headspace gas, and a closure for sealing the liner. The method may include providing a one-way valve in fluid communication with the interior of the liner and permitting flow in a direction out of the interior of the liner, and applying a vacuum to the one-way valve to evacuate headspace gas from the interior of the liner. In some embodiments, The liner-based assembly may also include a port in fluid communication with an annular space between the overpack and liner, and the method may include capping the port, for example, during application of the vacuum to the one-way valve.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 16, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Donald Ware, Alfredo Daniel Botet, Glenn M. Tom, Greg Nelson, Dale Mowrey, Jordan Hodges
  • Patent number: 8858685
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 14, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20140298992
    Abstract: A carbon pyrolyzate adsorbent is described that is selective for carbon dioxide in contact with gas mixtures including carbon dioxide and methane. The adsorbent has a carbon dioxide adsorbent capacity at 1 bar pressure of greater than 50 cm3 carbon dioxide per gram of adsorbent at 273K, a methane adsorption capacity at 1 bar pressure of less than 35 cm3 methane per gram of adsorbent at 21° C., and a bulk density of greater than 0.55 gram per cubic centimeter of volume. Such adsorbent can be utilized, for example, for biogas upgrading, natural gas purification, coal bed methane purification, and refining operations.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 9, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Melissa A. Petruska, Shaun M. Wilson, Edward A. Sturm
  • Patent number: 8849448
    Abstract: An electronic storage device is coupled with a container capable of holding liquid for electronically storing information relating to the liquid stored in the container. The system can be configured with an antenna, for storing information to and reading information from the electronic storage device. A microprocessor-based controller, coupled with the antenna, may be employed for controlling processing of the liquid based on information read from the electronic storage device by the antenna. A connector of a secure reader system having a reader is provided to physically couple to a container having an information storing mechanism, for periodically reading information from an information storing mechanism. The connector may draw material from the container simultaneous with the reading.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: September 30, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Kevin T. O'Dougherty, Robert E. Andrews, Tripunithura V. Jayaraman, Joe Menning, Christopher A. Baye-Wallace
  • Patent number: 8821640
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 2, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 8802882
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 12, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Ziyun Wang, Chongying Xu, Bryan C. Hendrix, Jeffrey F. Roeder, Tianniu Chen, Thomas H. Baum
  • Publication number: 20140220733
    Abstract: Antimony, germanium and tellurium precursors useful for CVD/ALD of corresponding metal-containing thin films are described, along with compositions including such precursors, methods of making such precursors, and films and microelectronic device products manufactured using such precursors, as well as corresponding manufacturing methods. The precursors of the invention are useful for forming germanium-antimony-tellurium (GST) films and microelectronic device products, such as phase change memory devices, including such films.
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: William Hunks, Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum, Matthias Stender, Philip S.H. Chen, Gregory T. Stauf, Bryan C. Hendrix
  • Patent number: 8796068
    Abstract: Precursors for use in depositing tellurium-containing films on substrates such as wafers or other microelectronic device substrates, as well as associated processes of making and using such precursors, and source packages of such precursors. The precursors are useful for deposition of Ge2Sb2Te5 chalcogenide thin films in the manufacture of nonvolatile Phase Change Memory (PCM), by deposition techniques such as chemical vapor deposition (CVD) and atomic layer deposition (ALD).
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: August 5, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Matthias Stender, Chongying Xu, Tianniu Chen, William Hunks, Philip S. H. Chen, Jeffrey F. Roeder, Thomas H. Baum
  • Patent number: 8796131
    Abstract: An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Edward E. Jones, Sharad N. Yedave, Ying Tang, Barry Lewis Chambers, Robert Kaim, Joseph D. Sweeney, Oleg Byl, Peng Zou
  • Publication number: 20140209627
    Abstract: The present disclosure relates to a blow-molded, rigid collapsible container that can be suitable for storage and dispensing systems of practically any size. The rigid collapsible container may be a stand-alone container. The container may be blow-molded as a unitary piece that may include folds or pre-folds that allows the container to collapse into a relatively flat position. In an expanded state, the container may have a generally trapezoidal prism shape.
    Type: Application
    Filed: August 22, 2012
    Publication date: July 31, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Glenn Tom, Thea Annette Ellingson, Amy Koland, Dale Gene Mowrey
  • Publication number: 20140202975
    Abstract: The present disclosure relates to an integrated liner-based system having an overpack and a liner provided within the overpack, the liner comprising a mouth and a liner wall forming an interior cavity of the liner and having a thickness such that the liner is substantially self-supporting in an expanded state, but is collapsible at a pressure of less than about 20 psi. The liner and overpack may be made by blow molding the liner and the overpack at the same time using nested preforms.
    Type: Application
    Filed: October 10, 2011
    Publication date: July 24, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Glenn Tom, Greg Nelson, Wei Liu, Amy Koland, Don Ware, Daniel J. Durham, Tracy M. Momany, Chantel Roush
  • Publication number: 20140206134
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8785889
    Abstract: An ion implantation system and process, in which the performance and lifetime of the ion source of the ion implantation system are enhanced, by utilizing isotopically enriched dopant materials, or by utilizing dopant materials with supplemental gas(es) effective to provide such enhancement.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 22, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Robert Kaim, Joseph D. Sweeney, Anthony M. Avila, Richard S. Ray
  • Patent number: 8784936
    Abstract: Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: July 22, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Chongying Xu, Tianniu Chen, Thomas M. Cameron, Jeffrey F. Roeder, Thomas H. Baum
  • Patent number: 8779383
    Abstract: Isotopically enriched silicon precursor compositions are disclosed, as useful in ion implantation to enhance performance of the ion implantation system, in relation to corresponding ion implantation lacking such isotopic enrichment of the silicon precursor composition. The silicon dopant composition includes at least one silicon compound that is isotopically enriched above natural abundance in at least one of 28Si, 29Si, and 30Si, and may include a supplemental gas including at least one of a co-species gas and a diluent gas. Dopant gas supply apparatus for providing such silicon dopant compositions to an ion implanter are described, as well as ion implantation systems including such dopant gas supply apparatus.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: July 15, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: James J. Mayer, Richard S. Ray, Robert Kaim, Joseph D. Sweeney
  • Patent number: 8778210
    Abstract: Compositions useful for the selective removal of silicon nitride materials relative to poly-silicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 ? min?1.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: July 15, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Emanuel I. Cooper, Eileen R. Sparks, William R. Bowers, Mark A. Biscotto, Kevin P. Yanders, Michael B. Korzenski, Prerna Sonthalia, Nicole E. Thomas
  • Patent number: 8765654
    Abstract: An oxidizing aqueous cleaning composition and process for cleaning post-plasma etch residue and/or hardmask material from a microelectronic device having said residue thereon. The oxidizing aqueous cleaning composition includes at least one oxidizing agent, at least one oxidizing agent stabilizer comprising an amine species selected from the group consisting of primary amines, secondary amines, tertiary amines and amine-N-oxides, optionally at least one co-solvent, optionally at least one metal-chelating agent, optionally at least one buffering species, and water. The composition achieves highly efficacious cleaning of the residue material from the microelectronic device while simultaneously not damaging the interlevel dielectric and metal interconnect material also present thereon.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 1, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: David W. Minsek, Michael B. Korzenski, Martha M. Rajaratnam
  • Patent number: 8754021
    Abstract: A cleaning composition and process for cleaning post-chemical mechanical polishing (CMP) residue and contaminants from a microelectronic device having said residue and contaminants thereon. The cleaning compositions are substantially devoid of amine and ammonium-containing compounds, e.g., quaternary ammonium bases. The composition achieves highly efficacious cleaning of the post-CMP residue and contaminant material from the surface of the microelectronic device without compromising the low-k dielectric material or the copper interconnect material.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: June 17, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey A. Barnes, Jun Liu, Peng Zhang
  • Patent number: 8733598
    Abstract: The present disclosure relates to novel and advantageous closure/connector assemblies for use with a dispense assembly. The closure/connector includes a closure body as well as a cap seat adaptor for operable connection to the closure body. The cap seat adapter has a proximal end and a distal end and is configured for fluid communication with a source of material to be dispensed. The closure/connector also has a cap for connection to the distal end of the cap seat adaptor. A pressurizing gas inlet fitting adapted for connection to a pressure source is also included as a part of the closure/connector. The closure/connector assembly, in conjunction with the dispense assembly, is configured for the secure transport and dispense of the material to be dispensed.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: May 27, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gregory C Nelson, Tom Johnson, Richard L Wilson, Michael Elam