Patents Assigned to Advanced Thermal Sciences
  • Patent number: 8157951
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber, an electrostatic chuck within the chamber having a top surface for supporting a workpiece and having indentations in the top surface that form enclosed gas flow channels whenever covered by a workpiece resting on the top surface. The reactor further includes thermal control apparatus thermally coupled to the electrostatic chuck, an RF plasma bias power generator coupled to apply RF power to the electrostatic chuck, a pressurized gas supply of a thermally conductive gas, a controllable gas valve coupling the pressurized gas supply to the indentations to facilitate filling the channels with the thermally conductive gas for heat transfer between a backside of a workpiece and the electrostatic chuck at a heat transfer rate that is a function of the pressure against the backside of the workpiece of the thermally conductive gas.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 17, 2012
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman
  • Patent number: 8092639
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck with a surface for holding a workpiece inside the chamber includes a backside gas pressure source coupled to the electrostatic chuck for applying a thermally conductive gas under a selected pressure into a workpiece-surface interface formed whenever a workpiece is held on the surface and an evaporator inside the electrostatic chuck and a refrigeration loop having an expansion valve for controlling flow of coolant through the evaporator. The reactor further includes a temperature sensor in the electrostatic chuck and a memory storing a schedule of changes in RF power or wafer temperature.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 10, 2012
    Assignee: Advanced Thermal Sciences Corporation
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 8092638
    Abstract: A plasma reactor for processing a workpiece includes a reactor chamber, an electrostatic chuck within the chamber for supporting a workpiece, an RF plasma bias power generator coupled to apply RF power to the electrostatic chuck and a refrigeration loop having an evaporator inside the electrostatic chuck with a refrigerant inlet and a refrigerant outlet. Preferably, the evaporator includes a meandering passageway distributed in a plane beneath a top surface of the electrostatic chuck. Preferably, refrigerant within the evaporator is apportioned between a vapor phase and a liquid phase. As a result, heat transfer between the electrostatic chuck and the refrigerant within the evaporator is a constant-temperature process. This feature improves uniformity of temperature distribution across a diameter of the electrostatic chuck.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: January 10, 2012
    Assignees: Applied Materials Inc., Advanced Thermal Sciences Corporation
    Inventors: Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman
  • Patent number: 8034180
    Abstract: A method of controlling the temperature of a workpiece on a workpiece support in a plasma reactor includes placing coolant in a flow channel thermally coupled to the workpiece support, supporting a thermally conductive gas between the workpiece and the workpiece support to establish a backside gas pressure, providing sensors to measure the temperature of the workpiece support and the workpiece, and determining whether the rate of change in workpiece temperature is less or more than a rate limited by a thermal mass of the workpiece support. If the rate is less or equal, the thermal conditions of the coolant in the flow channel are changed to reduce a difference between the measured workpiece support temperature and a target workpiece support temperature. If the rate is more, the pressure of the thermally conductive gas is changed to reduce a difference between the measured workpiece temperature and a target workpiece temperature.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: October 11, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Paul Lukas Brillhart, Richard Fovell, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman
  • Patent number: 8021521
    Abstract: A method of processing a workpiece in a plasma reactor having an electrostatic chuck for holding a workpiece in a chamber of the reactor includes providing a thermally conductive gas under pressure between a backside of the workpiece and a top surface of the electrostatic chuck, controlling the temperature of the electrostatic chuck, defining a desired workpiece temperature, measuring a current workpiece temperature or temperature related to the workpiece temperature and inputting the measured temperature to a thermal model representative of the electrostatic chuck. The method further includes determining from the thermal model a change in the pressure of the thermally conductive gas that would at least reduce the difference between the measured temperature and the desired temperature, and changing the pressure of the thermally conductive gas in accordance with the change determined from the thermal model.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 20, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Douglas A. Buchberger, Jr., Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, Williams W. Cowans, Glenn W. Zubillaga, Isaac Millian
  • Patent number: 8012304
    Abstract: A plasma reactor having a reactor chamber and an electrostatic chuck having a surface for holding a workpiece inside the chamber includes inner and outer zone backside gas pressure sources coupled to the electrostatic chuck for applying a thermally conductive gas under respective pressures to respective inner and outer zones of a workpiece-surface interface formed whenever a workpiece is held on the surface, and inner and outer zone heat exchangers coupled to respective inner and outer zones of said electrostatic chuck. The reactor further includes inner and outer zone temperature sensors in inner and outer zones of the electrostatic chuck and a thermal model capable of simulating heat transfer through the inner and outer zones, respectively, between the evaporator and the surface based upon measurements from the inner and outer temperature sensors, respectively.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: September 6, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Paul Lukas Brillhart, Richard Fovell, Hamid Tavassoli, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman
  • Patent number: 7988872
    Abstract: In a plasma reactor having an electrostatic chuck with an electrostatic chuck top surface for supporting a workpiece, thermal transfer medium flow channels in the interior of the electrostatic chuck, a method for controlling temperature of the workpiece during plasma processing includes circulating thermal transfer medium through the thermal transfer medium flow passages and supplying a thermally conductive gas between the workpiece and the electrostatic chuck top surface, and changing thermal transfer medium thermal conditions of thermal transfer medium flowing in the thermal transfer medium flow channels so as to change the temperature of the electrostatic chuck at a first rate limited by the thermal mass of the electrostatic chuck. The method further includes changing the backside gas pressure of the thermally conductive gas so as to change the temperature of the workpiece at a second rate faster than the first rate.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: August 2, 2011
    Assignees: Applied Materials, Inc., Advanced Thermal Sciences Corporation
    Inventors: Paul Lukas Brillhart, Richard Fovell, Douglas A. Buchberger, Jr., Douglas H. Burns, Kallol Bera, Daniel J. Hoffman, Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7765820
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 3, 2010
    Assignee: Advanced Thermal Sciences, Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7661460
    Abstract: A compact heat exchanger for interchanging thermal energy between at least two fluids, one of which fluids may be a refrigerant in hot or cold form or in a liquid/vapor phase, and another of which fluids is a thermal transfer fluid. The heat exchanger may incorporate an internal heating element. The thermal transfer fluid is transported between two concentric metal tubes, while the refrigerant moves along a tubing helically wrapped about or between the tubes and is in thermal contact therewith.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: February 16, 2010
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans
  • Patent number: 7442275
    Abstract: In many processes used in fabricating semiconductors the wafer is seated on the top surface of a pedestal and heated in a high energy process step, such as plasma etching. The pedestal, chuck or platen may be cooling but the wafer gradually heats until the process can no longer continue. Where large, e.g. 300 mm diameter, wafers are being processed the temperature level across the wafer is difficult to maintain substantially constant. In this system and method the lateral temperature distribution is equalized by a heat sink structure in a chamber immediately under the wafer support on top of the pedestal. A number of spatially distributed wicking posts extend downwardly from a layer of wicking material across the top of the chamber, into a pool of a vaporizable liquid. At hot spots, vaporized liquid is generated and transported to adjacent condensation posts extending up from the liquid. The system thus passively extracts heat to equalize temperatures while recirculating liquid and assuring adequate supply.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: October 28, 2008
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 7415835
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: August 26, 2008
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7337625
    Abstract: A system and method for maintaining the temperature of a thermal transfer fluid at a selectable level within a wide temperature range, so as to operate a process tool in a chosen mode employing at lease two cascaded stages, each operating with a different fluid in a separate refrigeration cycle. By interrelating energy transfers between parts of upper and lower stages, thermal efficiency is maximized and a smooth continuum of temperature levels can be provided. The refrigerants advantageously have vaporization points below and above ambient, for upper and lower stages respectively, and employs the upper stage for a constant refrigeration capacity, controlling the final temperature with the lower stage. The system allows for a further extension of range because the thermal transfer fluid can be heated for some process tool modes as the refrigeration cycles are run at low loads.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: March 4, 2008
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 7243500
    Abstract: Systems and methods for heat exchange in accordance with the invention define adequately long-interchange distances for two fluids by wrapping a tube containing a first fluid about the wall of an inner cylindrical tank, within a gap formed with a second concentric tank. A second fluid is transmitted in the space defined between the turns of the tube and the two walls, providing effective short length thermal interchange through the tube walls. The tube is in the line contact with both tank walls and the fluids can flow rapidly over an adequately long length, so that high efficiency is provided in a low cost system.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 17, 2007
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga
  • Patent number: 7195693
    Abstract: In many processes used in fabricating semiconductors the wafer is seated on the top surface of a pedestal and heated in a high energy process step, such as plasma etching. The pedestal, chuck or platen may be cooling but the wafer gradually heats until the process can no longer continue. Where large, e.g. 300 mm diameter, wafers are being processed the temperature level across the wafer is difficult to maintain substantially constant. In this system and method the lateral temperature distribution is equalized by a heat sink structure in a chamber immediately under the wafer support on top of the pedestal. A number of spatially distributed wicking posts extend downwardly from a layer of wicking material across the top of the chamber, into a pool of a vaporizable liquid. At hot spots, vaporized liquid is generated and transported to adjacent condensation posts extending up from the liquid. The system thus passively extracts heat to equalize temperatures while recirculating liquid and assuring adequate supply.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: March 27, 2007
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 7178353
    Abstract: A system and method for controlling the temperature of a process tool uses the vaporizable characteristic of a refrigerant that is provided in direct heat exchange relation with the process tool. Pressurized refrigerant is provided as both condensed liquid and in gaseous state. The condensed liquid is expanded to a vaporous mix, and the gaseous refrigerant is added to reach a target temperature determined by its pressure. Temperature corrections can thus be made very rapidly by gas pressure adjustments. The process tool and the operating parameters will usually require that the returning refrigerant be conditioned and processed for compatibility with the compressor and other units, so that cycling can be continuous regardless of thermal demands and changes.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: February 20, 2007
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Kenneth W. Cowans, William W. Cowans, Glenn W. Zubillaga, Isaac Millan
  • Patent number: 7152426
    Abstract: A system and method for maintaining the temperature of a thermal transfer fluid at a selectable level within a wide temperature range, so as to operate a process tool in a chosen mode employing at lease two cascaded stages, each operating with a different fluid in a separate refrigeration cycle. By interrelating energy transfers between parts of upper and lower stages, thermal efficiency is maximized and a smooth continuum of temperature levels can be provided. The refrigerants advantageously have vaporization points below and above ambient, for upper and lower stages respectively, and employs the upper stage for a constant refrigeration capacity, controlling the final temperature with the lower stage. The system allows for a further extension of range because the thermal transfer fluid can be heated for some process tool modes as the refrigeration cycles are run at low loads.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: December 26, 2006
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 6993918
    Abstract: A system and method for maintaining the temperature of a thermal transfer fluid at a selectable level within a wide temperature range, so as to operate a process tool in a chosen mode employing at least two cascaded stages, each operating with a different fluid in a separate refrigeration cycle. By interrelating energy transfers between parts of upper and lower stages, thermal efficiency is maximized and a smooth continuum of temperature levels can be provided. The refrigerants advantageously have vaporization points below and above ambient, for upper and lower stages respectively, and employs the upper stage for a constant refrigeration capacity, controlling the final temperature with the lower stage. The system allows for a further extension of range because the thermal transfer fluid can be heated for some process tool modes as the refrigeration cycles are run at low loads.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: February 7, 2006
    Assignee: Advanced Thermal Sciences
    Inventor: Kenneth W. Cowans
  • Patent number: 6783080
    Abstract: A system and method for controlling a critical process variable, such as the temperature of one or more temperature control units for cluster tools in a semiconductor fabrication facility, uses dual interrelated PID) algorithms for interrelated but at times separate control of heating capabilities. The temperature control units operate with high power efficiency, because no heating energy is expended during cooling and non-transition modes. When approaching a temperature threshold, however, the heating algorithm is reinstated just long enough to provide minimum undershoot and enabling precise, low per consuming, steady state control at ±0.1° C., minimizing undershoot and enabling precise steady state control at ±0.1° C.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 31, 2004
    Assignee: Advanced Thermal Sciences Corp.
    Inventors: Matthew Antoniou, Bryan Christofferson
  • Patent number: 6775996
    Abstract: The problem of controlling the temperature of the different units in a process tool system which have to be cooled or heated using thermal transfer fluid at selected setpoints and flow rates is resolved by a system having multiple modular units each with some operative and form factor commonality but at least dual functional capability. The modular units each have separate recirculation loops for thermal transfer fluid but cool the fluid using refrigeration cycles or facilities water supplies or heat the fluid using compressed hot gases or electrical energy. By employing operative units which can be internally varied to provide different thermal capacities within form factor constraints, the system enables concurrent temperature control needs of a number of different units to be met with an energy efficient, low footprint, highly adaptable system.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: August 17, 2004
    Assignee: Advanced Thermal Sciences Corp.
    Inventor: Kenneth W. Cowans
  • Patent number: 6769882
    Abstract: A motor/pump system which uses an enclosed rotor shell, and also interior hydrodynamic bearings which are lubricated by the liquid being pumped, is arranged to minimize localized heating at the bearings to vaporization levels under high load conditions. To this end output pressure from the pump, which varies with load, is communicated into the rotor interior, without bulk fluid transfer. The increased pressure raises the vaporization temperature, automatically adjusting it with increased load to maintain the hydrodynamic bearing effect.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: August 3, 2004
    Assignee: Advanced Thermal Sciences Corp.
    Inventor: Kenneth W. Cowans