Abstract: Methods and systems for generating and synchronizing multiple clocks are disclosed herein that have extremely low skew across multiple channels and latency that is both minimal and well-defined. A phase-locked loop circuit generates a plurality of clock signals to synchronize channel circuits that receive core data streams. The channel circuits convert the core data streams into serial data streams. The phase-locked loop circuit or another phase-locked loop circuit generates a core clock signal for the registered transfer of the core data streams to the channel circuits. One or more of the plurality of clock signals may be distributed to the channel circuits by a register-to-register transfer.
Type:
Grant
Filed:
October 29, 2001
Date of Patent:
December 28, 2004
Assignee:
Agilent Technologies, Inc.
Inventors:
Charles L. Wang, Benny W. H. Lai, Charles E. Moore, Philip W. Fisher
Abstract: A method of providing an automatic gain control (AGC) in a receiver structure includes multiplying a received analogue signal with a predetermined gain setting to obtain an amplifier output signal, sampling the amplifier output signal, estimating the energy in the samples, calculating the average energy, computing the percentage of clipped samples, calculating the target energy value based on the average energy and the percentage of clipped samples and the gain setting, and applying the update receiver gain setting.
Abstract: A method and system for determining a biopolymer array substrate thickness dependent optimal focus distance for scanning a molecular array by a molecular array scanner are disclosed. Also disclosed are methods of determining the thickness of a biopolymer array substrate using a position sensitive device (PSD) component of a biopolymer array scanner. Further methods include determining the thickness of said biopolymeric array and automatically selecting an optimal focus distance using the determined thickness and a calibration function on thickness versus optimal focus distance. The subject invention finds use in a variety of different applications, including both genomic and proteomic applications.
Type:
Grant
Filed:
July 31, 2002
Date of Patent:
December 28, 2004
Assignee:
Agilent Technologies, Inc.
Inventors:
Jayati Ghosh, John F. Corson, Debra A. Sillman
Abstract: Systems and methods for time-budgeting an integrated circuit design are provided. A representative system includes an information acquisition device, a computer, and a memory element associated with the computer, the memory element configured to store the information and associate a timing point that accounts for signal delays between the border of a functional block and the various circuits within the block. A representative method includes the following steps: acquiring circuit information that describes the conductors that traverse a border of the functional block, inserting a timing point in the information, determining a delay time in response to the timing point, and deriving a constraint in response to the delay time.
Type:
Grant
Filed:
June 26, 2002
Date of Patent:
December 28, 2004
Assignee:
Agilent Technologies, Inc.
Inventors:
Dennis B. Batchelor, David James Mielke
Abstract: In a reflectometer measurement for measuring—in response to a stimulus signal—return signals reflected and/or backscattered in a network to be measured, operation for receiving the return signals is temporarily disabled or at least suppressed during such operation modes, wherein return signals resulting from closer ranges of the network can cause substantial spurious signals to be added to return signals resulting from more distant ranges of the network.
Abstract: An optical transceiver module includes a laser configured to provide an optical output signal having a power level that is based on a bias current. The optical transceiver module includes a controller is configured to cause the laser to be biased with an initial bias current, to receive a monitoring signal indicative of the power level, to compare the power level to a desired power level range, and to cause the laser to be biased with an adjusted bias current if the power level is not within the desired power level range.
Abstract: A method for cooling the discharge tube in a gas discharge or atomic emission detector is described. An air cooled discharge detector is also disclosed. In the method and the detector, air is passed over the outer surface of the discharge tube thereby cooling the outer and inner surface of the discharge tube. Air cooling is utilized in any gas discharge detector including radio frequency powered atomic emission detectors.
Abstract: A method and a vector network analyzer compensate for unequal source match and load match of a test port of the vector network analyzer. The method characterizes the source match and the load match, computes a delta-match factor from the characterized source match and load match, and uses the delta-match factor to compensate for the difference. The method compensates S-parameter data for a device under test measured by the vector network analyzer. The vector network analyzer comprises a computer program that, when executed by a controller, implements a calibration compensation.
Abstract: A circuit and method according to an embodiment of the invention synchronize multiple digital data paths, each containing a set of digital data signals and an associated clock signal. The circuit includes a dual-port memory having a first port configured to store samples of each set of digital data signals by way of the clock signal associated with each set. A second port of the memory is configured to retrieve the stored samples, with the retrieval of the samples being timed so that each of the sets of digital data signals is synchronized with each other and with one of the clock signals.
Abstract: An impedance measuring apparatus comprising an automatic balanced bridge has four numerically controlled oscillators that supply sine-wave signals and cosine-wave signals to the quadrature detector and vector modulator of the narrow-band amplifier inside the automatic balanced bridge. The frequency or phase of the output signals of the four numerically controlled oscillators are updated by numeric control from the outside. The four numerically controlled oscillators of the impedance measuring apparatus are oscillators whose frequency or phase is changed a pre-determined time after they have been controlled from the outside. Furthermore, the impedance measuring apparatus has control means with which the change in the frequency or the phase of the output signals of the four numerically controlled oscillators is synchronized.
Abstract: An optical component in the form of a right angled triangular prism having a first side, a second side orthogonal to the first side, and a third side generally inclined to the first and second sides to reflect optical radiation incoming from the first sided towards the second side. The first and second sides have semi-reflecting surfaces acting as etalon surfaces providing an interferometric pattern. The optical transmittance between the first and the second sides is wavelength dependent and the radiation exiting the second side of the component is rotated 90 degrees to the radiation entering the first side.
Abstract: A portable medical analyzer comprising a sampling module with a sample port for receiving body fluid, an assay sensor module for analysis of the body fluid, an analytical detector module with detection of information from the assay, and a communications module for transferring the information to a remote location via a wired or wireless network.
Type:
Application
Filed:
July 16, 2004
Publication date:
December 23, 2004
Applicant:
Agilent Technologies, Inc.
Inventors:
Dirk Boecker, Rick Pittaro, Michael Greenstein, Michael C. Higgins, Dominique M. Freeman
Abstract: The present disclosure relates to an optical cavity, comprising a first non-concave reflector positioned at a first end of the optical cavity and a second non-concave reflector positioned at a second end of the optical cavity that receives and reflects light reflected from the first non-concave reflector. The first non-concave reflector is configured to focus light that reflects off of the reflector back upon itself to avoid diffraction losses from the optical cavity. In one embodiment of the invention, the first non-concave reflector includes a layer of material that has a thickness that vanes as a function of radial distance out from an axial center of the layer. In another embodiment of the invention, the first non-concave reflector includes a layer of material that has an index of refraction that varies as a function of radial distance out from an axial center of the layer.
Abstract: A method for synchronizing a measurement in a communication system. Recent developments in communication systems have resulted in combining the traffic historically carried separately by telephone and data networks. The service provided by such systems is referred to as Voice over Packet (VoP) with the more popular version using the Internet Protocol (IP) commonly referred to as Voice over IP (VoIP). VoP technologies have made maintaining voice quality at high levels more complex by compressing the voice signal and transmitting it in discrete packets. With voice traffic there is the need for timely packet delivery, often in networks that were not originally designed for these conditions. Digitizing analog voice signals often affects voice clarity. Objective tests for voice quality are available but are difficult to synchronize between stations.
Abstract: Electromechanical power converters for delivering electric power to a primary load are described. In one aspect, an electromechanical power converter includes first and second electrodes, an electret, and a power extraction circuit. The first and second electrodes form a variable capacitor with a capacitance that varies over an operative capacitance range as a result of relative electrode movement in response to mechanical energy. The electret is disposed between the first and second electrodes. The power extraction circuit is coupled between the first and second electrodes and is operable to conduct charge between the electrodes through the primary load during a discharge phase and to set the electrodes to an inter-electrode reset voltage during a reset phase.
Abstract: A trigger signal for a memory tester uses a (breakpoint) trigger qualified according to what part of the test program is being executed. The qualified breakpoint trigger can be delayed before becoming a system trigger signal that can be used to trigger a ‘scope mode and to force an error flag to a selected value so as to compel a particular path with the test program. To provide stable waveforms for the sweeping of the voltage thresholds and sample timing offset the memory tester records the addresses for a target sequence of transmit vectors issued during an initial pass through the test program subsequent to the occurrence of the trigger. These addresses are exchanged for the instructions themselves, which are then altered to remove branching, and stored in a reserved portion of the memory they came from. Once the altered target sequence is stored the desired information is produced by restarting the entire test program and letting it run exactly as before down to the trigger.
Type:
Grant
Filed:
April 19, 2001
Date of Patent:
December 21, 2004
Assignee:
Agilent Technologies, Inc.
Inventors:
Alan S Krech, Jr., Brad D Reak, Randy L Bailey, John M Freeseman
Abstract: Waveforms of input/output signals for a device under test (DUT) are simultaneously displayed. A user is presented with an interface that allows the user to specify different modes for capturing data for different input/output signals for the DUT. Data for the different input/output signals are captured in accordance with different data capture mechanisms dependent upon the different modes specified by the user. Based on the data, waveforms for each of the different input/output signals are simultaneously displayed.
Type:
Grant
Filed:
July 26, 2002
Date of Patent:
December 21, 2004
Assignee:
Agilent Technologies, Inc.
Inventors:
Hsui-Huan Shen, Stephen Dennis Jordan, Alan S. Krech, Jr.
Abstract: A switching control circuit for a switching power converter utilizes an oscillating signal that causes reduced electromagnetic interference by the power converter by way of modulating the frequency of the oscillating signal within a specified frequency range. An output voltage monitor circuit monitors the output voltage of the power converter, thus producing an output voltage monitor signal. Also, a randomized signal generator creates a randomized signal, which is then used to drive a frequency range converter that is employed to produce a frequency modulation signal. The current state of the frequency modulation signal is based on the current state of the randomized signal, with the frequency range converter limiting the current state of the frequency modulation signal so that the oscillating signal will only operate within the specified frequency range. A variable frequency oscillator then generates the oscillating signal whose frequency is based on the current state of the frequency modulation signal.
Abstract: A suspended thin-film resistor and methods for producing the same are disclosed. In one embodiment, a device is produced by depositing a first and second contact on a substrate, depositing a sacrificial material on the substrate at a location between the first and second contacts, depositing a thin-film resistor over the first and second contacts and the sacrificial material, and thermally decomposing the sacrificial material.
Abstract: A frequency plan for a signal analysis circuit includes operational parameters that are selected on the basis of first intermediate frequency (IF) filtering characteristics that are uniquely identified for the circuit. That is, rather than selecting a frequency plan based upon an original design of the circuit and circuit layout, actual IF filtering characteristics are considered. The center frequency of the passband of the first. IF filter may be measured and then used as an important factor, along with inhibiting spurious responses, in a devising the frequency plan for the specific circuit.