Patents Assigned to Agilent Technologies
  • Patent number: 10473632
    Abstract: A sample injector configured to introduce a sample fluid into a mobile phase, wherein the mobile phase is to be driven by a mobile phase drive through a separation unit for separating compounds of the sample fluid in the mobile phase, wherein the sample injector comprises a metering device being operable for displacing fluid and for intaking a metered amount of the sample fluid into the sample injector, an injector valve being switchable for operating the sample injector selectively in a sample intake mode in which the metering device is operable to intake the sample fluid from a sample container, or a separation mode in which intaken sample fluid is driven between the mobile phase drive and the separation unit for separating the compounds, and a flow direction controller configured for defining an enabled flow direction of fluid displaced by the metering device and for defining a disabled flow direction.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: November 12, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel Thielsch, Thomas Ortmann
  • Patent number: 10455683
    Abstract: An ion throughput pump (ITP) includes a pump inlet configured to communicate with a vacuum chamber; an ionization source fluidly communicating with the vacuum chamber via the pump inlet and configured for ionizing gas species received from the vacuum chamber; a pump outlet; ion optics configured for accelerating ions produced by the ionization source toward the pump outlet; and a roughing pump stage configured for receiving the ions from the ionization source, producing neutral species from the ions, and pumping the neutral species through the pump outlet.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: October 22, 2019
    Assignee: Agilent Technologies, Inc.
    Inventor: Mark Denning
  • Publication number: 20190314786
    Abstract: In embodiments, a packing material for supported liquid extraction has a sorbent media that includes synthetic silica particles. In embodiments, the synthetic silica particles can have physical properties relating to one or more of particle surface area, shape, size, or porosity. In one embodiment, synthetic silica particles have a surface area less than about 30 m2/g. In another embodiment, the synthetic silica particles have an approximately uniform particle shape. In further examples, synthetic silica particles have a particle size in a range of about 30-150 ?m inclusive or greater than about 200 ?m. In another embodiment, synthetic silica particles are arranged to have a pore size greater than about 500 Angstroms. In an embodiment, an apparatus for supported liquid extraction includes a container and a sorbent media that includes synthetic silica particles. In a further embodiment, a method for extracting target analytes through supported liquid extraction is provided.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 17, 2019
    Applicant: Agilent Technologies, Inc.
    Inventors: Kunqiang Jiang, Derick Lucas, Bruce Richter
  • Patent number: 10436684
    Abstract: Aspects of the present disclosure include a solid phase sorbent for preparation of analytical samples. The solid phase sorbent includes particles that are surface modified with an ?-cyclodextrin moiety. Also provided is a method of reducing matrix effects in an analytical sample. In some embodiments, the method includes contacting a sample comprising a matrix-interfering agent and an analyte with ?-cyclodextrin modified particles to produce a contacted sample wherein the matrix-interfering agent binds to the ?-cyclodextrin modified particles; separating the ?-cyclodextrin modified particles from the contacted sample to produce a matrix-reduced composition; and detecting the analyte in the matrix-reduced composition. Systems for practicing the subject methods are provided that include the subject solid phase sorbent.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: October 8, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Bruce Richter, Derick Lucas, David Long, Limian Zhao
  • Patent number: 10434496
    Abstract: Superficially porous particles are provided. Aspects of the superficially porous particles include a non-porous inner core and a porous outer shell that includes inner and outer porous regions. The inner porous region can include ordered cylindrical pores substantially perpendicular to the non-porous inner core. The outer porous region can include conical pores which extend to the surface of the particles and which are in fluid communication with the cylindrical pores of the inner porous region. Also provided are methods of making the subject superficially porous particles. Aspects of the methods include subjecting substantially solid inorganic oxide particles to agitation in an aqueous solution in the presence of a first cationic surfactant and a second anionic surfactant, which together form micelles, to pseudomorphically transform the particles.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: October 8, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Ta-Chen Wei, Xiaoli Wang
  • Patent number: 10408790
    Abstract: A multiple capillary florescent detection system employing optical fiber bundles that each fiber bundle has more than one fiber illuminating each sample vessel.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: September 10, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Ho-ming Pang, Wei Wei
  • Patent number: 10399048
    Abstract: Samples in an array of containers are processed by mounting the containers on a sample stage, moving magnets into proximity with bottoms of the containers of a first column of containers to apply a magnetic field, moving the magnets into proximity with bottoms of the containers of a second column, and moving heater elements into proximity with the container bottoms of the first column. While the magnetic field is applied to the containers of the second column, heat energy may be applied to the containers of the first column. The process may be repeated for additional columns. The containers may also be shaken to agitate the samples. A single apparatus may perform heating, shaking, and magnetic field application, without needing to transport the containers to different stations.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: September 3, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Chai Siong Siow, Thuan-Khim Khor, David Knorr
  • Patent number: 10401331
    Abstract: An apparatus includes a first column heating apparatus, which includes: a first substrate; a second substrate including silicon; and a first heating element disposed between the first substrate and the second substrate. The apparatus also includes a second column heating apparatus, which includes: a third substrate; a fourth substrate including silicon; and a second heating element disposed between the third substrate and the fourth substrate.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: September 3, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Paul C Dryden, Sammye Elizabeth Traudt, George P Walsh, William H Wilson, Richard P White, Jane Ann Leous
  • Patent number: 10401221
    Abstract: An optical emission spectrometer system includes a light source and a dichroic beam combiner. The light source emits first light in a first direction and second light in a second direction different from the first direction. The dichroic beam combiner receives the first light via a first light path and the second light via a second light path, reflects a portion the first light into an entrance aperture of a light detection and measurement apparatus, and transmits a portion of the second light into the entrance aperture, enabling analysis and measurement of both first and second light characteristics simultaneously. The portion of the first light reflected into the entrance aperture predominately has wavelengths in a first range of wavelengths and the portion of the second light transmitted into the entrance aperture predominately has wavelengths in a second range of wavelengths, different from the first range of wavelengths.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 3, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Michael Bolles, Yin Sheng Sun, Lindsay Buck, Glyn Russell
  • Publication number: 20190259592
    Abstract: A method for operating a data processing system to find peaks in a mass spectrum that includes an ordered set of measurements of the abundances of species as a function of the mass/charge ratio of the species is disclosed. The method includes selecting a candidate blob that has a plurality of blob peaks from the mass spectrum. The data processing system selects a candidate blob peak for characterization. The candidate blob peak is approximated by a first species peak using a species peak model having a plurality of parameters by fitting the species peak model to a portion of the blob that has values that are substantially free of contributions from other species peaks that overlap with the first species peak and that are not represented by the species peak model. The first species peak is then subtracted from the candidate blob.
    Type: Application
    Filed: December 18, 2018
    Publication date: August 22, 2019
    Applicant: Agilent Technologies, Inc.
    Inventor: Daniel Y. Abramovitch
  • Patent number: 10385847
    Abstract: A pump for pumping fluid, wherein the pump includes a working chamber, a piston assembly configured for reciprocating within the working chamber to thereby displace fluid, a piston actuator being rigidly assembled with the piston assembly at least in a working mode of the pump to thereby transmit drive energy to the piston assembly to reciprocate along a common rigid axis of the piston-actuator-assembly, and a bearing arrangement bearing the piston assembly and the piston actuator in the pump so that the piston-actuator-assembly provided by the piston assembly and the piston actuator is capable of performing a pendulum-type compensation motion around a pendulum point at the piston actuator on the common rigid axis.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: August 20, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Arne Kurz, Bernhard Dehmer, Lothar Mitzlaff
  • Patent number: 10388501
    Abstract: An ion transfer device for transferring ions from a first chamber to a second, reduced-pressure chamber includes a tube and a bore selector. The tube includes a plurality of tube bores. The bore selector is positioned at an inlet end of the tube and includes an inlet port. The tube is movable relative to the bore selector, and/or the bore selector is movable relative to the tube, to align the inlet port with a selected one of the tube bores while blocking the other tube bores. Alignment of the inlet port with the selected tube bore defines an ion transfer path from the first chamber, through the selected tube bore, and to the second chamber. The ion transfer device may be utilized, for example, in an atmospheric-pressure interface of a mass spectrometer.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: August 20, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Maozi Liu, Nigel P. Gore
  • Patent number: 10376814
    Abstract: A separator (e.g. an impact centrifugal separator) is for use in collection of liquid portions of a bi-phasic flowstream in a supercritical fluid system. A separator chamber defines an interior space, surrounded by a spiral channel and that has an exit at a lower portion of the separator chamber. A flowstream director (e.g. an entry lube) focuses the flowstream so that the flowstream impacts a wail of the spiral channel at an angle that promotes coalescence of the liquid component. The spiral channel may promote further coalescence of the liquid portions within the constraining spiral channel after impact. A central director may be included in the interior space of the separator chamber to promote flow of the gaseous component toward the exit. A dripper may be included in fluid communication with the spiral channel, for example, in the exit and to direct the coalesced liquid into a collection vessel.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: August 13, 2019
    Assignee: Agilent Technologies, Inc.
    Inventor: Edwin E. Wikfors
  • Patent number: 10379607
    Abstract: An environmental chamber having an interior compartment, an augmented display, and a controller is disclosed. The interior compartment is adapted for isolating an experimental setup from an environment external to the interior compartment. The augmented display is positioned to allow a user in the external environment to view the interior compartment and an image generated on the augmented display. The controller generates the image. The image includes information about a component within the interior compartment. The augment display can include a touch-enabled display screen that allows the user to interact with controller.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 13, 2019
    Assignee: Agilent Technologies, Inc.
    Inventor: Robert H. Kincaid
  • Patent number: 10373816
    Abstract: Provided herein, among other things, is a method of ionizing a first stream of liquid by an electrospray ion source having a nebulizer, wherein the first stream of liquid may comprise an analyte. In some embodiments, the method may comprise: a) providing the first stream of liquid to the nebulizer; b) adding a second stream of liquid to the first stream of liquid, wherein the second stream of liquid comprises a co-solvent that has a relatively high boiling point and an enhancement solvent that a relatively high boiling; and c) nebulizing and ionizing the resulting liquid.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 6, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Steven M. Fischer, Justin R. Cross
  • Patent number: 10371671
    Abstract: A sample management device which comprises a source flow path in which a fluidic sample can flow, a volume flow adjustment unit configured to adjust a volume flow of the fluidic sample to be branched off from the source flow path at a fluidic coupling point, and a fluidic valve fluidically coupled with the source flow path and with the volume flow adjustment unit, wherein the fluidic valve is switchable into a branch off state in which the fluidic coupling point is established within the source flow path to branch off an adjustable volume of the fluidic sample from the source flow path via the fluidic coupling point while a flow of the fluidic sample in the source flow path continues.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: August 6, 2019
    Assignee: Agilent Technologies, Inc.
    Inventors: Thomas Ortmann, Daniel Thielsch
  • Publication number: 20190238763
    Abstract: An apparatus and method for generating images of specimens is disclosed. The apparatus includes an imaging system, controller, and user interface. The imaging system generates a plurality of component images of a specimen, each component image corresponding to a different viewing condition. Each image is represented by an intensity as a function of location on the specimen. The controller stores the component images and generates a compound image from a plurality of the component images. The compound image includes a weighted sum of first and second ones of the component images, the controller displaying the compound image on a display controlled by the controller. The user interface is adapted to control a weighting factor used in generating the weighted sum in response to user input. The controller redisplays the compound image after the weighting factor is changed in response to user input.
    Type: Application
    Filed: April 3, 2019
    Publication date: August 1, 2019
    Applicant: Agilent Technologies, Inc.
    Inventor: Andrew Ghetler
  • Patent number: 10341583
    Abstract: An apparatus and method for generating images of specimens is disclosed. The apparatus includes an imaging system, controller, and user interface. The imaging system generates a plurality of component images of a specimen, each component image corresponding to a different viewing condition. Each image is represented by an intensity as a function of location on the specimen. The controller stores the component images and generates a compound image from a plurality of the component images. The compound image includes a weighted sum of first and second ones of the component images, the controller displaying the compound image on a display controlled by the controller. The user interface is adapted to control a weighting factor used in generating the weighted sum in response to user input. The controller redisplays the compound image after the weighting factor is changed in response to user input.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: July 2, 2019
    Assignee: Agilent Technologies, Inc.
    Inventor: Andrew Ghetler
  • Patent number: 10337001
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: July 2, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson
  • Patent number: 10327321
    Abstract: A microwave chamber for plasma generation. The microwave chamber comprises a launch structure at a first end of the microwave chamber to accommodate a microwave source for producing microwave energy and a termination section at a second end of the microwave chamber opposite the first end. The termination section is configured to substantially block propagation of the microwave energy from the second end of the chamber. The microwave chamber further comprises an internal wall structure for guiding the microwave energy received within the microwave chamber at the first end toward the second end and defines a cavity. The internal wall structure comprises an impedance matching section intermediate the first end and the second end, and a capacitive loaded section intermediate the impedance matching section and the second end, wherein the capacitive loaded section comprises at least one ridge extending along a longitudinal axis of the chamber.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: June 18, 2019
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Michael Ron Hammer