Patents Assigned to Aichi Steel Corporation
  • Patent number: 10961670
    Abstract: Provided are a magnetic marker and a magnetic marker detection system with a reduced magnetic force. The magnetic marker detection system (1S) in which magnetism generated from the magnetic marker (1) laid on a road surface (53) is detected by a magnetic sensor (2) attached to a vehicle's body floor (50) of a vehicle (5) is a system with the magnetic marker (1) and the magnetic sensor (2) in combination, the magnetic marker having a magnetism reach ratio Gh/Gs, which is a ratio of a magnetic flux density Gh at a position at a height of 250 mm with respect to a magnetic flux density Gs of a surface, being equal to or larger than 0.5% and the magnetic sensor using a magneto-impedance element including a magneto-sensitive body with impedance changing in accordance with an external magnetic field.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: March 30, 2021
    Assignee: AICHI STEEL CORPORATION
    Inventors: Michiharu Yamamoto, Tomohiko Nagao, Hitoshi Aoyama
  • Patent number: 10948046
    Abstract: Provided is a CVT ring member having a nitrided layer on a surface thereof. The CVT ring member includes a chemical composition containing, by mass, C: 0.43 to 0.70%, Si: 2.50% or less, Mn: 1.00% or less, Cr: 1.50 to 4.00%, Mo: 0.50 to 3.00% and V: 1.00% or less while satisfying a relation of Formula 1: 159×C(%)+91×Si(%)+68×Cr(%)+198×Mo (%)+646?1,000, and the balance being Fe and unavoidable impurities. The ring member has a tensile strength of 1,700 MPa or more. The nitrided layer has a surface hardness of HV800 to HV950.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: March 16, 2021
    Assignees: Aichi Steel Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Udagawa, Yukio Ito, Koji Nishida
  • Patent number: 10900988
    Abstract: Provided is a rotary machine in which the output of a magnetic sensor is hardly lowered even if the rotation speed of a rotor becomes high. The rotary machine includes a rotor, a housing, a magnet, and a magnetic sensor. The rotor axially rotates around a rotation axis. The housing is formed of a conductive material and contains the rotor. The magnet is attached to the rotor such that an arrangement direction of a pair of magnetic poles is in a radial direction of the rotor. The magnetic sensor is attached to the housing. The magnetic sensor detects a time variation of a magnetic field generated from the magnet to detect the rotation speed of the rotor. The magnetic sensor is located on the outside than the magnet in the radial direction. The magnetism sensing direction of the magnetic sensor is orthogonal to the radial direction.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: January 26, 2021
    Assignee: AICHI STEEL CORPORATION
    Inventors: Michiharu Yamamoto, Tomohiko Nagao, Takeshi Kawano, Koei Gemba
  • Publication number: 20210013755
    Abstract: An electric motor for reducing eddy current loss including an armature; a field element or permanent magnet as a magnetic source; and a shaft rotating together with the armature or field element. The permanent includes magnet particles bound together by a binder resin, and has a degree of electric resistance anisotropy (?1/?2) of 2 or more. The first electric resistivity (?1) is measured in an axial direction and a second electric resistivity (?2) is measured in a direction perpendicular to the axial direction. The bonded magnet is, for example, a compression-molded bonded magnet that contains 93% to 98.5% of the magnet particles, and the first electric resistivity is 300 ??m or more. When the compression-molded bonded magnet whose compression direction is arranged along the axial direction is used as a field source, the eddy current loss occurring in the compression-molded bonded magnet can be efficiently reduced.
    Type: Application
    Filed: March 26, 2019
    Publication date: January 14, 2021
    Applicant: AICHI STEEL CORPORATION
    Inventors: Atsushi NARITA, Aki WATARAI
  • Patent number: 10884076
    Abstract: An electrical pulse current is supplied to an amorphous wire from a pulse generator, an alternate current voltage whose magnitude is in response to an external magnetic field induced at both ends of a detecting coil wound around the amorphous wire is generated, a positive direct current is applied from a positive power supply by superimposing to the amorphous wire as a bias current so as to produce a bias of magnetization within the amorphous wire and the occurrence of pulse noises is restrained, so as to make it possible to perform high-sensitivity magnetic field detection.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: January 5, 2021
    Assignee: AICHI STEEL CORPORATION
    Inventors: Takeshi Kawano, Hitoshi Aoyama, Michiharu Yamamoto, Hideo Arakawa
  • Publication number: 20200354907
    Abstract: A magnetic marker (1), laid in or on a road so as be detectable by a magnetic sensor (2) attached to a bottom surface side of a vehicle (5), that is used for vehicle-side drive assist control for assisting driving is an isotropic ferrite plastic magnet, molded into a columnar shape, that contains a magnetic powder of iron oxide, i.e. a powder of a magnetic material, dispersed in a polymer material. In a marker system (1S) including this magnetic marker (1), magnetic markers (1) accommodated in holes (530) bored in a road surface (53) are arranged along the center of a lane.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Applicant: Aichi Steel Corporation
    Inventors: Michiharu YAMAMOTO, Tomohiko NAGAO, Hitoshi AOYAMA
  • Patent number: 10822677
    Abstract: A forged component having a chemical composition including, by mass %, C: 0.30 to 0.45%, Si: 0.05 to 0.35%, Mn: 0.50 to 0.90%, P: 0.030 to 0.070%, S: 0.040 to 0.070%, Cr: 0.01 to 0.50%, Al: 0.001 to 0.050%, V: 0.25 to 0.35%, Ca: 0 to 0.0100%, N: 0.0150% or less, and the balance being Fe and unavoidable impurities, and satisfying formula 1. Metal structure is a ferrite pearlite structure, and a ferrite area ratio is 30% or more. Vickers hardness is in the range of 320 to 380 HV. 0.2% yield strength is 800 MPa or more. A Charpy V-notch impact value is in the range of 7 to 15 J/cm2.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 3, 2020
    Assignees: AICHI STEEL CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeyuki Uenishi, Susumu Owaki, Hisanori Koma, Tomoyasu Kitano, Kazuhiro Tanahashi, Nobuyuki Shinohara
  • Publication number: 20200332483
    Abstract: A work vehicle system configured of a plurality of work vehicles performing work relating to magnetic markers to be laid on a road surface so as to be detectable by a magnetic sensor attached to a bottom surface side of a vehicle in order to achieve vehicle-side control for assisting driving operation of the vehicle by a driver or automatic driving not relying on operation of the driver, including a target acquisition apparatus which acquires a control target for travelling along a laying line where the magnetic markers are to be laid, an automatic steering apparatus for achieving automatic steering by controlling a steering angle of a steering wheel based on the control target, and a work apparatus which takes charge of the work relating to the magnetic markers.
    Type: Application
    Filed: February 13, 2017
    Publication date: October 22, 2020
    Applicant: AICHI STEEL CORPORATION
    Inventors: YAMAMOTO Michiharu, NAGAO Tomohiko, AOYAMA Hitoshi
  • Patent number: 10801170
    Abstract: A magnetic marker (1), laid in or on a road so as be detectable by a magnetic sensor (2) attached to a bottom surface side of a vehicle (5), that is used for vehicle-side drive assist control for assisting driving is an isotropic ferrite plastic magnet, molded into a columnar shape, that contains a magnetic powder of iron oxide, i.e. a powder of a magnetic material, dispersed in a polymer material. In a marker system (1S) including this magnetic marker (1), magnetic markers (1) accommodated in holes (530) bored in a road surface (53) are arranged along the center of a lane.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 13, 2020
    Assignee: AICHI STEEL CORPORATION
    Inventors: Michiharu Yamamoto, Tomohiko Nagao, Hitoshi Aoyama
  • Publication number: 20200319270
    Abstract: A magneto-impedance sensor which makes it possible to further improve the accuracy of external magnetic field measurement includes a magneto-impedance element, a detection circuit, a magneto-sensitive body wiring line and a conductive layer wiring line. The magneto-impedance element includes a magneto-sensitive body and a conductive layer adjacent to the magneto-sensitive body. The magneto-sensitive body and the conductive layer pass a current therethrough in the opposite directions. The magneto-sensitive body wiring line and the conductive layer wiring line are electrically connected to the magneto-sensitive body and the conductive layer, respectively. A detection coil and a detection circuit of the magneto-impedance element are electrically connected to each other through detecting conductive wires. At least parts of these lines are adjacent to each other and allow a current to pass therethrough in opposite directions.
    Type: Application
    Filed: May 31, 2017
    Publication date: October 8, 2020
    Applicant: AICHI STEEL CORPORATION
    Inventors: Michiharu YAMAMOTO, Tomohiko NAGAO, Yoshihiro IWANAGA
  • Publication number: 20200320870
    Abstract: A position capture method for capturing an own vehicle position by using a positioning part that measures a position of a vehicle (4) and a plurality of magnetic markers (5) laid on a traveling path of the vehicle (4) with their laying positions specified includes: upon detection of any of the plurality of magnetic markers (5), selecting, from among the laying positions of the plurality of magnetic markers (5), the laying position located nearest to an actual measured position measured by the positioning part; and capturing, as the own vehicle position, a corrected position based on the laying position, thereby making high-accuracy position capture possible.
    Type: Application
    Filed: May 30, 2017
    Publication date: October 8, 2020
    Applicants: Aichi Steel Corporation, Advanced Smart Mobility Co., Ltd.
    Inventors: Michiharu Yamamoto, Tomohiko Nagao, Hitoshi Aoyama, Keiji Aoki
  • Publication number: 20200303958
    Abstract: A wireless power-feeding apparatus that enables efficient wireless feeding to a power-receiving coil embedded at the center of a spherical power-receiving device. The apparatus includes: a holding member for holding the power-receiving device; a power-transmitting coil; a driver circuit for supplying the power-transmitting coil with high-frequency current to generate a magnetic flux for wireless power-feeding to the power-receiving coil; and a wireless data receiver for receiving data transmitted regularly from a wireless data transmitter, the power-transmitting coil being positioned relative to the holding member in such a manner that the axes of the power-receiving coil and the power-transmitting coil are parallel to each other when the power-receiving device is held by the holding member in such a manner that a mark provided on the surface of the power-receiving device faces a predetermined direction.
    Type: Application
    Filed: January 29, 2019
    Publication date: September 24, 2020
    Applicants: MAXELL HOLDINGS, LTD., MIZUNO CORPORATION, AICHI STEEL CORPORATION, SUNWISE CO., LTD.
    Inventors: Keiichi TANII, Takeshi NARUO, Shohei SHIBATA, Masaki MORI, Michiharu YAMAMOTO, Yasushi SENDA
  • Publication number: 20200284586
    Abstract: A position capturing system (1) includes a vehicle (5) provided with a measuring unit (2) which magnetically detects a magnetic marker (10) laid in a road and determines a polarity thereof and a GPS unit (35) which measures a position; a database (34) having stored therein a laying position of each of magnetic markers (10) linked with polarity information of the magnetic marker (10); and a position capturing unit (32) which executes processes for capturing the position of the vehicle (5) by selecting corresponding laying position from the database (34) when any of the magnetic markers (10) is detected; and when any of the magnetic markers (10) is detected, selects the laying position located in a specified area with reference to a measured position by the GPS unit (35) and linked with polarity information which complies with the polarity of the detected magnetic marker (10).
    Type: Application
    Filed: August 29, 2018
    Publication date: September 10, 2020
    Applicant: AICHI STEEL CORPORATION
    Inventors: Michiharu YAMAMOTO, Tomohiko NAGAO, Hitoshi AOYAMA
  • Publication number: 20200285822
    Abstract: A vehicular system (1) detects a magnetic marker (10) laid in a road and wirelessly communicates with a wireless tag (15) attached to the magnetic marker (10). The system includes a measuring unit (2) which detects the magnetic marker (10) by sensing magnetism, a tag reader (34) which executes a communication process with the wireless tag (15), and a control unit (32) which sets a communication start point as a start point of the communication process by the tag reader (34). The control unit (32) sets, as a communication start point, a time after a lapse of specified time with reference to a time point of detection at which the measuring unit (2) detects the magnetic marker (10). Upon reading information from the wireless tag (15), the tag reader (34) terminates communication, thereby shortening a communication time.
    Type: Application
    Filed: September 10, 2018
    Publication date: September 10, 2020
    Applicant: Aichi Steel Corporation
    Inventor: Michiharu YAMAMOTO
  • Publication number: 20200247300
    Abstract: A magnetic marker retaining method that includes placing a plurality of sheet-shaped magnetic markers on a surface of a band-shaped carrier sheet, the plurality of sheet-shaped magnetic markers being so as to be spaced in a longitudinal direction of the band-shaped carrier sheet; and retaining the plurality of sheet-shaped magnetic markers in a state of a roll body with the band-shaped carrier sheet rolled up in a roll shape, the band-shaped carrier sheet being rolled up such that each surface of the plurality of sheet-shaped magnetic markers directly contacts the other side of the surface of the band-shaped carrier sheet, on which the plurality of sheet-shaped magnetic markers are placed, and the plurality of sheet-shaped magnetic markers being to be laid on a road.
    Type: Application
    Filed: April 6, 2020
    Publication date: August 6, 2020
    Applicant: Aichi Steel Corporation
    Inventors: Michiharu YAMAMOTO, Tomohiko NAGAO, Hitoshi AOYAMA
  • Publication number: 20200217904
    Abstract: An object is to provide a magneto-sensitive wire (magneto-sensitive body) with which the measurement range of a magnetic sensor can be expanded, the heat resistance and the high-temperature durability can be improved, and other appropriate properties can be obtained. The magneto-sensitive wire of the present invention is composed of a Co-based alloy having a composite structure in which crystal grains are dispersed in an amorphous phase. The Co-based alloy is, for example, a Co—Fe—Si—B-based alloy. In this case, the total amount of Si and B is preferably 20 to 25 at % with respect to the Co-based alloy as a whole. Preferably, the average diameter of the crystal grains is 70 nm or less and the area ratio of the crystal grains is 10% or less to the composite structure as a whole. The magneto-sensitive wire has a circular cross section, for example, and the wire diameter is about 1 to 100 ?m.
    Type: Application
    Filed: August 8, 2018
    Publication date: July 9, 2020
    Applicant: AICHI STEEL CORPORATION
    Inventors: Norihiko HAMADA, Akihiro SHIMODE
  • Patent number: 10638758
    Abstract: Provided is a novel heterocycle-containing amino acid compound that has a metal uptake ability equivalent to mugineic acids and can be less expensively produced than mugineic acids. Also provided are a fertilizer and a plant growth regulating agent each comprising the novel heterocycle-containing amino acid compound. The present invention is a heterocycle-containing amino acid compound represented by general formula (1): (wherein: R1, R2 and R3 are the same or different and represent a hydrogen atom or a carboxyl-protecting group; R4 represents a hydrogen atom or a hydroxy-protecting group; R5 represents a hydrogen atom or an amino-protecting group; and n is an integer of 1-3) or a salt thereof and use of the same.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: May 5, 2020
    Assignees: AICHI STEEL CORPORATION, TOKUSHIMA UNIVERSITY
    Inventors: Kosuke Namba, Yoshiko Murata
  • Publication number: 20200133299
    Abstract: A marker system (1) including a sensor array (21) for detecting a magnetic marker laid in a road, a tag reader (34) which acquires marker position information indicating a laying position of the magnetic marker, an IMU (22) which estimates a relative position of a vehicle by inertial navigation calculation, and a control unit (32) which performs an arithmetic process for identifying a position of the vehicle based on the laying position of the detected magnetic marker, and also identifies the position of the vehicle after passage over the magnetic marker based on a relative position of the vehicle estimated by the IMU (22), thereby allowing stable identification of its own vehicle position without being affected by surrounding environment.
    Type: Application
    Filed: March 23, 2018
    Publication date: April 30, 2020
    Applicant: AICHI STEEL CORPORATION
    Inventors: Michiharu YAMAMOTO, Tomohiko NAGAO, Hitoshi AOYAMA
  • Patent number: 10632892
    Abstract: A magnetic marker retaining method that includes placing a plurality of sheet-shaped magnetic markers on a surface of a band-shaped carrier sheet, the plurality of sheet-shaped magnetic markers being so as to be spaced in a longitudinal direction of the band-shaped carrier sheet; and retaining the plurality of sheet-shaped magnetic markers in a state of a roll body with the band-shaped carrier sheet rolled up in a roll shape, the band-shaped carrier sheet being rolled up such that each surface of the plurality of sheet-shaped magnetic markers directly contacts the other side of the surface of the band-shaped carrier sheet, on which the plurality of sheet-shaped magnetic markers are placed, and the plurality of sheet-shaped magnetic markers being to be laid on a road.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: April 28, 2020
    Assignee: AICHI STEEL CORPORATION
    Inventors: Michiharu Yamamoto, Tomohiko Nagao, Hitoshi Aoyama
  • Patent number: 10620276
    Abstract: A magnetic detection device that is reduced in size and thickness, but also accurate, includes a substrate and an element disposed on the substrate and including a magneto-sensitive wire sensing an external magnetic field component in an extending direction and a detection coil looping around the magneto-sensitive wire. The magnetic detection device further includes a magnetic field deflector deflecting an external magnetic field around the magneto-sensitive wire, and having a nonmagnetic material core part and a soft magnetic material shell part covering an outer side of at least part of the core part. The magnetic field deflector has a hollow, rather than solid, structure of soft magnetic material. The soft magnetic material volume is therefore significantly smaller, and the hysteresis caused in the magnetic field deflector is remarkably reduced. With the magnetic detection device, the magnetic field component orthogonal to the substrate is also detected with higher accuracy.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: April 14, 2020
    Assignee: AICHI STEEL CORPORATION
    Inventors: Takashi Shimoto, Jun Nakamura, Ryusuke Yamashita, Tomohiko Nagao, Michiharu Yamamoto