Abstract: An anterior part of an aircraft propulsion assembly nacelle, having an air intake lip disposed at a front end and an outer panel, of which an outer face extends an outer part of the air intake lip. A front edge of the outer panel and a rear edge of the air intake lip are shaped so as to overlap radially and to nest so as to ensure a continuous surface between the outer surface of the outer part of the air intake lip and the outer face of the outer panel. Moreover, the front edge of the outer panel is connected to the rear edge of the air intake lip with no added rigid element. This permits a rigid connection while avoiding creating local irregularities on the outer surface of the nacelle, which irregularities might disrupt the flow of air around the nacelle, giving rise to additional drag.
Type:
Grant
Filed:
August 11, 2020
Date of Patent:
May 23, 2023
Assignee:
AIRBUS OPERATIONS SAS
Inventors:
Alain Porte, Jacques Lalane, Frédéric Vinches, Franck Dobigeon
Abstract: An acoustic panel for an aircraft nacelle air intake comprising a resistive skin perforated by noise absorption holes and a core against which the resistive skin extends, wherein the resistive skin has a smooth visible face and a castellated rear face with alternating ribs and grooves. The noise absorption holes are formed exclusively in the grooves, i.e., in a zone where the skin is less thick, which enables the holes to have a diameter that is both greater than the thickness of the skin and small enough not to have any impact on drag. The mechanical strength of the resistive skin provided by the ribs ensures that the lesser thickness of the resistive skin in the grooves does not render the resistive skin overly flexible.
Abstract: A forward part of an aircraft propulsion unit nacelle, comprising an air intake lip, an acoustic panel, and a rigid connection between the acoustic panel and the air intake lip. The acoustic panel has a resistive surface and a back skin, and the rigid connection is formed between the air intake lip and the back skin of the acoustic panel to form a propagation path for forces between the air intake lip and the back skin. This configuration gives freedom from design constraints, which enables an increase in the acoustic treatment region toward the front of the nacelle. An aircraft propulsion unit comprising a nacelle having such a forward part is also provided.
Type:
Grant
Filed:
October 16, 2019
Date of Patent:
May 16, 2023
Assignee:
AIRBUS OPERATIONS SAS
Inventors:
Alain Porte, Jacques Lalane, Julien Sentier
Abstract: An anti-icing protection system for an aircraft engine nacelle, the nacelle comprising an inner shroud, an air intake lip forming a leading edge of the nacelle, the protection system comprising a heat exchanger device including at least one heat pipe configured to transfer heat emitted by a heat source to the inner shroud.
Type:
Grant
Filed:
October 17, 2019
Date of Patent:
May 9, 2023
Assignee:
AIRBUS OPERATIONS SAS
Inventors:
Alain Porte, François Pons, Gregory Albet, Maxime Zebian
Abstract: An optimized protection against ice on the inner and outer faces of an aircraft engine nacelle air intake with the air intake including an outer face and an inner face meeting at a line at the longitudinally extreme, called extremum line, an acoustic panel being installed on the inner surface of a part of the inner face. An elimination system based on vibration of the ice formed is put in place on at least a part of the outer face and an ice formation prevention system using a hot fluid is put in place on at least a part of the inner face and either an ice elimination system or an ice formation prevention system using a hot fluid is installed on the inner face and on the outer face, a marking line marking the boundary between the two systems.
Type:
Grant
Filed:
March 2, 2022
Date of Patent:
May 9, 2023
Assignee:
AIRBUS OPERATIONS SAS
Inventors:
Arnaud Bourhis, Gregory Albet, Alain Porte
Abstract: The avionic system of an aircraft includes a set of avionic computers and a switch associated with each avionic computer. For each avionic computer of the set of avionic computers, the avionic system includes a communication link between the switch associated with this avionic computer and each of the switches associated with the other avionic computers. Each switch is configured such that it routes the data frames received on its input ports to its output ports in a manner predefined only on the basis of the input ports on which these data frames are received. The various switches are configured such that, when an avionic computer sends a data frame, this data frame is transmitted to all of the other avionic computers.
Abstract: A resistive skin element for an acoustic panel intended for an aircraft includes a first ply, a second ply with openings and a wire mesh which is sandwiched between the two plies. First ply includes at least one layer made of C/PEAK and a film made of PEI. Second ply includes at least one layer made of PEI First ply is crossed by perforations. Second ply has openings configured so that second ply does not obstruct the perforations of first ply. The wire mesh allows perforations with large sizes to be made while keeping good acoustic properties.
Abstract: A turbofan with a nacelle having a slider that is movable between an advanced position and a retracted position to open a window between a duct and the outside, blades, each one being able to move in rotation between a stowed position and a deployed position, and a maneuvering system that moves each blade, a transmission arrangement that rotates the blades one after the other, a drive system that converts the translational movement of the slider into a rotational movement of a first blade and that has a ball screw system, an epicyclic gear train, and an assembly of arms and levers.
Abstract: A process of joining a wing to an aircraft fuselage comprising the steps of: mapping the wing root of the wing, mapping the center-wing-box (CWB) of the aircraft fuselage, determining the position to provide the hole pattern on the CWB, providing the holes on the CWB, and attaching the wing root to the CWB. Primary and secondary templates with corresponding hole patterns may be used in combination with targets and laser trackers to implement the process. The hole pattern of the wing root can therefore be duplicated on the CWB at a position such that when the wings are joined to the fuselage, the aircraft will have optimum flight performance and dynamic symmetry. A predictive fit is thus provided, based on virtual representation and analysis, and advantageously permits the hole pattern to be provided without requiring the CWB and wing root to be brought together.
Abstract: An assembly of a pylon and of a wing of an aircraft, the pylon including a primary structure with a rear face and an upper spar. The assembly includes a rear fastening system including a pair of vertical shackles articulated between the rear face of the primary structure and a first shoe fastened to the wing, wherein the shackles are fastened to the primary structure by a clevis-type connection, and a pair of transverse shackles articulated between the rear face of the primary structure and a second shoe fastened to the wing, wherein the shackles are fastened to the primary structure by a clevis-type connection. With such an assembly, the bulk of the rear fastening system is reduced.
Type:
Grant
Filed:
September 29, 2021
Date of Patent:
April 4, 2023
Assignee:
AIRBUS OPERATIONS SAS
Inventors:
Germain Gueneau, Thomas Robiglio, Michael Berjot
Abstract: A device comprises a transcription unit for transcribing an audio message received from the air traffic control into a text message, a processing unit for extracting first indications from the text message, a transcription unit for transcribing, into a restated text message, a restated audio message transmitted by the pilot to the air traffic control after the reception of the audio message, a processing unit for extracting second indications from the restated text message, a comparison unit for comparing the first and second indications and a warning unit for transmitting a warning to the pilot if a difference between the first and second indications is detected, so as to notify the pilot that they have misunderstood the audio message from air traffic control.
Abstract: A method for integrating and fitting at least one item of equipment and/or at least one line in a technical bay of an aircraft, comprising the steps comprising attaching the equipment and/or the line(s) on an integration module outside the fuselage of the aircraft, introducing the integration module into the fuselage of the aircraft via an opening of a baggage hold, and securing the integration module to a structure of the aircraft. An integration module is provided which comprises a chassis bounding a volume in which are positioned and attached at least one item of equipment and/or at least one line and having a cross section that is approximately identical to that of a baggage container and a length which is less than or equal to that of a baggage container.
Abstract: An apparatus for an aircraft having one or more aircraft wheel brakes, and a brake wear sensor configured to measure a wear state of a brake of the one or more aircraft wheel brakes, is disclosed. The apparatus includes a processor configured to determine a wear relationship between a wear state of the brake and a number of use cycles of the brake, determine a predicted wear state of the brake based on the wear relationship; determine a number of future use cycles of the brake based on a predicted condition of the brake, the predicted condition comprising the predicted wear state of the brake; and provide an indication of the determined number of the future use cycles to ground crew and/or a pilot of the aircraft, wherein the number of future use cycles is the number of use cycles for which the brake is allowed to be used, and a use cycle comprises all uses of the brake relating to a flight undertaken by the aircraft.
Type:
Grant
Filed:
February 26, 2019
Date of Patent:
March 14, 2023
Assignees:
AIRBUS OPERATIONS LIMITED, AIRBUS OPERATIONS (SAS), AIRBUS (SAS)
Inventors:
Utsav Oza, Andrew Bill, Kurt Bruggemann, Rodrigo Jimenez, Brice Cheray, Maud Consola
Abstract: A synchronizing system including a generation unit for generating a synchronizing pulse from data of an independent clock, the synchronizing pulse being generated in a periodic manner, transmission links to transmit the synchronizing pulse to all the computation units, and in each of the computation units, a control element to compare the synchronizing pulse that has been received to a pulse generated by an internal clock of the computation unit and to detect a compliance or a lack of compliance, a scheduler of each of the computation units activating a sequence of partitions when the synchronizing pulse is received, and this only if the control element has detected a compliance. The synchronizing system is configured to synchronize the computation units in a reliable and accurate manner and to increase the operating safety of these computation units.
Abstract: A wall covering panel for a nose of an aircraft. The panel comprises a rigid carrying framework preferably having an alveolar structure obtained by 3-D printing, a décor carried by the carrying framework and an acoustically and thermally insulating padding fixed to the carrying framework, and also attachments for fixing the carrying framework to the primary structure of the aircraft. Preferably, the panel also integrates systems, such as electrical route portions or ventilation route portions that traverse the panel from one side to the other or lead to an outlet equipment item also integrated in the panel. Only the carrying structure of the panel, which carries the décor, the insulating padding and any route portions and equipment items, is fixed to the primary structure of the aircraft. The number of attachments is low; the kitting-out and the finishing of the nose of the aircraft are greatly simplified.
Abstract: A method for managing the offtake of power produced by an auxiliary power unit of an aircraft. The method comprises a step of calculating a maximum capacity for offtake of mechanical power that the auxiliary power unit can provide to the aircraft, a step of determining an actual offtake of mechanical power taken off by a first mechanical power offtake system of the auxiliary power unit, a step of comparing the maximum capacity for offtake of mechanical power and the actual offtake of mechanical power, a step of optimizing the offtake of mechanical power which step, based on the comparison of the maximum capacity for offtake of mechanical power and the actual offtake of mechanical power, determines at least one corrective action. A device for managing the offtake of power produced by an auxiliary power unit of an aircraft and an aircraft including such a device are provided.
Type:
Grant
Filed:
August 2, 2021
Date of Patent:
February 14, 2023
Assignees:
Airbus Operations SAS, Airbus SAS, Airbus Operations S.L.
Inventors:
Didier Poirier, Etienne Foch, Guillaume Alix, Nicolas Chauvet, Paul-Emile Roux, Souhaib Boukaya, Marcos Javier Chibrando
Abstract: A nacelle having a fan casing, a cowl that movable between an advanced position and a retracted position that opens an opening between a bypass duct and the outside, deflectors secured to the mobile cowl, wherein, in the advanced position, they are around the fan casing and wherein, in the retracted position, they are across the opening, and a fan ramp with a mounting base and flaps that are able to rotate on the mounting base between a stowed position and a deployed position. For each flap, the fan ramp has a return element that urges the flap) into the deployed position, and the deflectors have a stop in contact with the flap when the mobile cowl passes from the retracted position to the advanced position. Thus, in the advanced position, the flaps are folded back and their bulk is reduced.
Abstract: A method for calibrating a device for measuring a mass of fuel carried by an aircraft by: receiving a message containing a reference permittivity, a reference density and a reference volume, determining a first calibration coefficient as a function of the reference permittivity, determining a second calibration coefficient as a function of the reference volume, determining a third coefficient of calibration as a function of the reference density, determining a calibrated mass of fuel as a function of a determined height of fuel corrected as a function of the first calibration coefficient, a volume of fuel determined as a function of the corrected height and corrected as a function of the second calibration coefficient, and a mass of fuel determined as a function of the corrected volume and corrected as a function of the third calibration coefficient.
Abstract: An aircraft engine attachment including a beam fixed to a pylon and including a yoke with two walls, and a connecting rod with an articulation housed in the yoke, in which the connecting rod has a front flank and a rear flank which are facing inner faces of the walls. For each wall, a wearing part is disposed against the inner face of the wall and between the wall and the corresponding flank of the connecting rod. A Fixing arrangement ensures the fixing of the wearing part to the wall. Thus, the wearing parts prevent an excessive tilting of the connecting rod and the wearing of the connecting rod or of the yoke.
Abstract: An acoustic absorption structure comprising a plurality of resonators. Each resonator comprises a first chamber which has a first mouthpiece delimited by an edge pressed against an inner surface of a porous zone of a skin so that the first chamber and the skin delimit a first cavity, a second chamber, in which is positioned the first chamber, which delimits, with the first chamber, a second cavity, at least one acoustic orifice passing through the first chamber, at least one drainage orifice passing through the first chamber and at least one drainage hole passing the second chamber, each drainage orifice and each drainage hole being configured to limit an accumulation of fluid in the resonator. Also, an aircraft propulsive assembly or an aircraft comprising the acoustic absorption structure are provided.