Abstract: A charging system for electrical accumulator vehicle batteries, comprising a charging station principally designed to generate a charging current for the batteries, a system for thermally conditioning the batteries, by the circulation of a heat transfer fluid. A vehicle-mounted segment comprises a component for measuring the battery temperatures, a system for measuring the state of charge of the batteries, and a heat transfer fluid distribution circuit. A non-vehicle-mounted segment comprises a ground module of the thermal conditioning system for generating a flux of a heat transfer fluid, a control-command module designed to determine, during charging, as a function of the states of charge of the batteries and the battery temperatures, the flow rates and temperatures of the heat transfer fluid and a charging current required to achieve a target final state, characterized by a target temperature and a target charge at the end of a given charging time.
Abstract: A hydraulic device includes a cylinder, a piston that is able to move in the cylinder, and a segment which is interposed between the cylinder and the piston and which includes at least one leakage duct that is configured to generate a hydraulic film, between the segment and the piston, reducing friction and to orient a hydraulic flow leaving the leakage duct which causes the segment to rotate about the piston.
Abstract: A locking device which includes a hook and a dual control for locking the hook. The dual control includes a first shaft and a second shaft. The first shaft incorporates a section and is rotationally mobile between a hooked position, in which the section is accommodated in a housing of the hook and an unhooked position, in which the section is outside the housing of the hook. The second shaft incorporates a section and is rotationally mobile between a locked position, in which the section of the second shaft is accommodated in a notch in a flange of the first shaft and an unlocked position, in which the section of the second shaft is outside the notch in the flange of the first shaft.
Abstract: A tray for an avionics bay, comprising a body and a recording device rigidly connected to each other in order to reduce the space requirement of acquisition systems on board an aircraft and dedicated to the prediction of failures. The recording device comprises a first input/output port to be connected to the avionics bay, a second input/output port to be connected to an item of electrical equipment, a data bus for routing signals between the first and the second input/output port, a collection member configured for acquiring at least some of the signals routed by the data bus between the first and the second input/output port, and a memory configured to store the signals acquired by the collection member.
Type:
Grant
Filed:
October 23, 2019
Date of Patent:
October 6, 2020
Assignees:
AIRBUS SAS, AIRBUS OPERATIONS SAS
Inventors:
Xavier Granier, Alain Lagarrigue, David Cumer
Abstract: This process for producing a thermoplastic composite part by laying of at least one thermoplastic composite layer on a tool includes laying on the tool a hardened first ply before the laying of the thermoplastic composite layer. The first ply is produced beforehand to the shape of the tool and includes a first material able to experience an attractive force when it is subjected to a magnetic field, and/or to an electrical potential difference, and includes a second material of a thermoplastic resin that is chemically compatible with the resin of the thermoplastic composite layer. The first ply is clamped to the tool by the effect of a magnetic field, and/or of an electrical potential difference, established at the level of the tool. In one form of implementation, the first ply is produced on a first-ply mold that is preferably of convex shape.
Abstract: The system for generating operational data includes an acquisition module of sets of aircraft movements tracking, an identification module which identifies a path for each aircraft from sets of movement tracking data, at least one runway and at least one parking zone, an identification module which identifies, for each path, phases associated with phase data, a generation module which generates sets of operational data comprising flight data, position data and phase data of each aircraft, and a transmission module which transmits these sets of operational data to a user system.
Abstract: An ultrasound probe for inspecting a bore opening onto a peripheral surface, includes a coupling support which has: a through-orifice to allow the ultrasound probe to pass through, a contact face, which has an external diameter greater than the diameter of the bore to be inspected and is configured to be pressed against the peripheral surface of the bore in order to close the bore.
Abstract: An ultrasound probe for inspecting a bore opening onto a peripheral surface includes an offcentring device which includes at least two strips which are elastically deformable, connected to the ultrasound probe and configured to keep the emission head of the ultrasound probe pressed firmly against the wall of the bore that is to be inspected.
Abstract: The present disclosure relates to a sealing device and an associated flight control surface mechanism and an associated aircraft. According to an aspect of the present disclosure, a sealing device (100, 100?) for a flight control surface mechanism (10) of an aircraft (1) is provided, the flight control surface mechanism includes a fixed part (20) and a movable wing surface (40), the movable wing surface is attached to the fixed part in a manner of being movable relative to the fixed part. The sealing device includes a fixed seal (120) attached to the fixed part and a movable seal (140, 140?) attached to the movable wing surface so as to move with the movement of the movable wing surface, the movable seal and the fixed seal cooperate with each other in order to provide an aerodynamic sealing for the flight control surface mechanism.
Abstract: An air input structure includes an air input lip and a front reinforcement frame placed inside the air input lip. The front part of the air input lip has a plurality of segments distributed angularly along the leading edge of the air input lip, two adjacent segments being separated by an intermediate part having an excess thickness. Each segment has four edges, each having an excess thickness relative to the rest of the segment.
Type:
Grant
Filed:
December 7, 2017
Date of Patent:
June 9, 2020
Assignees:
Airbus Operations S.A.S., AIRBUS SAS
Inventors:
Alain Porte, Patrick Oberle, Gregory Albet
Abstract: A method including obtaining real-time data, wherein the real-time data is at least one of data associated with aircrafts in and around an airport, real-time weather information, and runway unavailability at the airport. The real-time data is analyzed. A holding time associated with an aircraft that is approaching the airport for landing is measured based on the analysis of the real-time data. A revised speed advisory is determined for the aircraft based on the holding time. The revised speed advisory is sent to a flight navigation and performance computer and/or a flight management system on-board the aircraft, wherein a speed of the aircraft is controlled based on the revised speed advisory.
Abstract: A method for managing a battery according to a state of health of the battery, comprising, prior to using the battery, predetermining a maximum depth of discharge profile according to the state of health of the battery, the profile being dependent on a technology of the battery, on a nominal energy level to be made available each time the battery is discharged, the nominal energy level being substantially constant over a service life of the battery. While using the battery, a maximum depth of discharge of the battery is adjusted at regular intervals, each time the state of health of the battery decreases by a percentage corresponding to an update interval p % that is equal to p/100, that is, for all state of health values (SOHn) that are equal to SOH0-n×p %, where n is an integer comprised between 0 and 20/p.
Abstract: A hydraulic device includes a cylinder, a piston that is able to move in the cylinder, and a segment which is interposed between the cylinder and the piston and which includes at least one leakage duct that is configured to generate a hydraulic film, between the segment and the piston, reducing friction and to orient a hydraulic flow leaving the leakage duct which causes the segment to rotate about the piston.
Abstract: A nacelle comprising a fixed cowl and a movable cowl movable in translation, a window delimited by the fixed cowl and the movable cowl, a reverser flap movable in rotation and a drive mechanism coordinating the movements of the reverser flap with those of the movable cowl. The drive mechanism comprises two bearings fixed to the nacelle, for each bearing, a lever arm with one end movable in rotation on the bearing and one end articulated on the reverser flap, for each lever arm, a rail comprising a straight portion and a curved portion, for each lever arm, a rod with one end articulated on the lever arm, and for each rail, a slider that is movable in translation on the rail and is articulated to one end of the rod.
Type:
Grant
Filed:
January 30, 2018
Date of Patent:
May 5, 2020
Assignees:
AIRBUS OPERATIONS SAS, AIRBUS SAS
Inventors:
Eric Haramburu, Patrick Oberle, Nicolas Jolivet
Abstract: A device, system, and method for assisting a pilot of an aircraft. The device includes a processing unit which: acquires flight parameters of the aircraft, transmitted by a communications unit of the aircraft and records these flight parameters in a memory of the pilot assistance device; acquires behavioral information corresponding to a model of behavior of the aircraft, transmitted by a ground station, and records this behavioral information in the memory of the pilot assistance device; determines an indicator of the quality of flying of the aircraft as a function of at least a portion of the flight parameters recorded in the memory and of at least a portion of the behavioral information recorded in the memory; and control the display of the flying quality indicator.
Abstract: A device for managing configurations of an aircraft between an initial point and a final point comprises a computation module to determine at least one first evolution curve considering the aircraft to have assumed a first configuration and wherein the first evolution curve includes the first point and a final evolution curve considering the aircraft to have assumed at least one final configuration and wherein the final evolution curve or curves includes the final point, a computation module to compute at least one second point corresponding to the intersection of the first evolution curve or curves and the final evolution curve or curves, and a transmission module configured to transmit a signal representing the coordinates of the second point or points to a user device.
Abstract: A metallic foil for lightning strike protection in a composite aerospace structure having a length, a width, and a thickness of not more than 30 microns. There are a plurality of pores of a predefined geometric shape extending through the thickness of the metallic foil and being distributed across a surface area defined by the length and the width of the metallic foil. The plurality of pores in the aggregate define an open area of not more than 40% of the surface area and the metallic foil has a weight of not more than 115 g/m2. The metallic foil has a weight to conductivity ratio of not more than 0.40 gram-ohms per square.
Type:
Grant
Filed:
May 30, 2019
Date of Patent:
March 31, 2020
Assignee:
Airbus SAS
Inventors:
Mohammed Salim Rahamat, Mark A. Murdoch, Kenneth William Burtt, Jr., Brett Alexander Macdonald, Franck Flourens, Richard Murillo, Valentin García Martínez, Pablo Perez Cabrero
Abstract: A process and installation for producing a composite material part in which plies of continuous and electrically conductive fibers are deposited to form a stack of plies on a substrate. At least the face of the substrate bearing the stack is electrically insulating and the following steps are carried out a) an electrical terminal is inserted between the ends of at least two plies placed directly one on top of the other in the stack, and on at least two opposite sides of these plies b) when the fibers are dry, introducing a resin in order to impregnate the fibers and c) making a current flow between the electrical terminals through the plies in order to set the resin by resistive heating.
Abstract: An input/output device for an electric or electronic cabinet grouping together a plurality of devices such as computers. The input/output device includes input/output channels, conversion units and at least one computing unit. The conversion unit is connected to the input/output channels and to the computing unit. A digital network link protocol management unit is connected to the computing unit and to at least one transceiver. The computing unit executes software to provide a digital transmission of data representative of the input/output values between the network and the computers via the transceiver. An electric cabinet grouping together computers, each computer provided with a transceiver. The electric cabinet includes the input/output device.
Abstract: The vehicle receives batteries comprising cells arranged into at least one pack configured to be held in a vehicle structure, the pack being alternatively chosen from among at least one pack(P) and at least one pack(E) which are mechanically interchangeable and electrically substitutable. The pack(P) cells exhibit a maximum power density substantially higher than the pack(E) cells exhibit, and comprise cells exhibiting an energy density per unit mass substantially less than the pack(E) cells exhibit. The maximum electrical power of the pack(P) corresponds to the maximum electrical power needed to accomplish a first vehicle mission and the energy storage capacity of the pack(P) is at least sufficient to accomplish the first mission. The electrical energy storage capacity of the pack(E) corresponds to the electrical energy storage capacity needed to accomplish a second vehicle mission and the maximum electrical power is at least sufficient to accomplish the second mission.