Patents Assigned to AKOUSTIS, INC.
-
Patent number: 12160218Abstract: A resonator circuit device. The present invention provides for improved resonator shapes using egg-shaped, partial egg-shaped, and asymmetrical partial egg-shaped resonator structures. These resonator shapes are configured to give less spurious mode/noise below the resonant frequency (Fs) than rectangular, circular, and elliptical resonator shapes. These improved resonator shapes also provide filter layout flexibility, which allows for more compact resonator devices compared to resonator devices using conventionally shaped resonators.Type: GrantFiled: December 12, 2022Date of Patent: December 3, 2024Assignee: AKOUSTIS, INC.Inventors: Zhiqiang Bi, Dae Ho Kim, Pinal Patel, Kathy W. Davis, Rohan W. Houlden
-
Patent number: 12136983Abstract: A front end module (FEM) for a Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a PA, an RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.Type: GrantFiled: June 22, 2023Date of Patent: November 5, 2024Assignee: Akoustis, Inc.Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
-
Patent number: 12136906Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. A first patterned electrode is deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the first electrode and a planarized support layer is deposited over the sacrificial layer, which is then bonded to a substrate wafer. The crystalline substrate is removed and a second patterned electrode is deposited over a second surface of the film. The sacrificial layer is etched to release the air reflection cavity. Also, a cavity can instead be etched into the support layer prior to bonding with the substrate wafer. Alternatively, a reflector structure can be deposited on the first electrode, replacing the cavity.Type: GrantFiled: May 22, 2023Date of Patent: November 5, 2024Assignee: Akoustis, Inc.Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy
-
Patent number: 12102010Abstract: A method of forming a film can include heating a CVD reactor chamber containing a substrate to a temperature range between about 750 degrees Centigrade and about 950 degrees Centigrade, providing a first precursor comprising Al to the CVD reactor chamber in the temperature range, providing a second precursor comprising Sc to the CVD reactor chamber in the temperature range, providing a third precursor comprising nitrogen to the CVD reactor chamber in the temperature range, and forming the film comprising ScAlN on the substrate.Type: GrantFiled: March 5, 2021Date of Patent: September 24, 2024Assignee: Akoustis, Inc.Inventors: Craig Moe, Jeffrey M. Leathersich
-
Patent number: 12028046Abstract: A BAW resonator ladder topology pass-band filter can include a plurality of series branches each including BAW series resonators. A plurality of shunt branches can each include BAW shunt resonators, wherein the plurality of series branches are coupled to the plurality of shunt branches to provide the BAW resonator ladder topology pass-band filter. A high-impedance shunt branch can include a plurality of high-impedance BAW shunt resonators coupled together in-series to provide an impedance for the high-impedance shunt branch that is greater the other shunt branches in the BAW resonator ladder topology pass-band filter.Type: GrantFiled: May 18, 2021Date of Patent: July 2, 2024Assignee: Akoustis, Inc.Inventors: Saurabh Gupta, Zhiqiang Bi, Dae Ho Kim, Pinal Patel, Katherine W. Davis, Emad Mehdizadeh
-
Patent number: 11901880Abstract: An RF diplexer circuit device using modified lattice, lattice, and ladder circuit topologies. The diplexer can include a pair of filter circuits, each with a plurality of series resonator devices and shunt resonator devices. In the ladder topology, the series resonator devices are connected in series while shunt resonator devices are coupled in parallel to the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a plurality of series resonator devices, and a pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. A multiplexing device or inductor device can be configured to select between the signals coming through the first and second filter circuits.Type: GrantFiled: January 18, 2021Date of Patent: February 13, 2024Assignee: Akoustis, Inc.Inventors: Guillermo Moreno Granado, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
-
Patent number: 11895920Abstract: A method of forming a piezoelectric thin film includes sputtering a first surface of a substrate to provide a piezoelectric thin film comprising AlN, AlScN, AlCrN, HfMgAlN, or ZrMgAlN thereon, processing a second surface of the substrate that is opposite the first surface of the substrate to provide an exposed surface of the piezoelectric thin film from beneath the second surface of the substrate, wherein the exposed surface of the piezoelectric thin film includes a first crystalline quality portion, removing a portion of the exposed surface of the piezoelectric thin film to access a second crystalline quality portion that is covered by the first crystalline quality portion, wherein the second crystalline quality portion has a higher quality than the first crystalline quality portion and processing the second crystalline quality portion to provide an acoustic resonator device on the second crystalline quality portion.Type: GrantFiled: July 7, 2022Date of Patent: February 6, 2024Assignee: Akoustis, Inc.Inventors: Craig Moe, Jeffrey B. Shealy, Mary Winters, Dae Ho Kim, Abhay Saranswarup Kochhar
-
Patent number: 11881831Abstract: A method of manufacture for an acoustic resonator device. The method includes forming a nucleation layer characterized by nucleation growth parameters overlying a substrate and forming a strained piezoelectric layer overlying the nucleation layer. The strained piezoelectric layer is characterized by a strain condition and piezoelectric layer parameters. The process of forming the strained piezoelectric layer can include an epitaxial growth process configured by nucleation growth parameters and piezoelectric layer parameters to modulate the strain condition in the strained piezoelectric layer. By modulating the strain condition, the piezoelectric properties of the resulting piezoelectric layer can be adjusted and improved for specific applications.Type: GrantFiled: January 29, 2020Date of Patent: January 23, 2024Assignee: Akoustis, Inc.Inventors: Shawn R. Gibb, Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Ramakrishna Vetury, Jeffrey B. Shealy
-
Patent number: 11870422Abstract: A device includes a piezoelectric layer on a substrate and including a portion included in an acoustic resonator, a first conductive layer on the piezoelectric layer and including a first electrode of the acoustic resonator on a first side of resonator portion of the piezoelectric layer, and a second conductive layer on the piezoelectric layer and including a second electrode of the acoustic resonator on a second side of the resonator portion of the piezoelectric layer. An insulating layer is disposed on the second conductive layer and an interconnection metal layer is electrically connected to the second conductive layer or the first conductive layer and has a portion extending onto the insulating layer and overlapping a portion of the second conductive layer to provide a capacitor electrode of a capacitor coupled to the first electrode and/or the second electrode.Type: GrantFiled: December 3, 2020Date of Patent: January 9, 2024Assignee: Akoustis, Inc.Inventors: Saurabh Gupta, Zhiqiang Bi, Emad Mehdizadeh, Dae Ho Kim, Pinal Patel
-
Patent number: 11856858Abstract: A method of forming a piezoelectric film can include providing a wafer in a CVD reaction chamber and forming an aluminum nitride material on the wafer, the aluminum nitride material doped with a first element E1 selected from group IIA or from group IIB and doped with a second element E2 selected from group IVB to provide the aluminum nitride material comprising a crystallinity of less than about 1.5 degree at Full Width Half Maximum (FWHM) to about 10 arcseconds at FWHM measured using X-ray diffraction (XRD).Type: GrantFiled: August 2, 2019Date of Patent: December 26, 2023Assignee: Akoustis, Inc.Inventors: Craig Moe, Jeffrey M. Leathersich, Arthur E. Geiss
-
Patent number: 11838005Abstract: A BAW resonator filter can include a BAW resonator pass-band filter ladder, the BAW resonator pass-band filter ladder can be configured to pass frequency components of an input signal in a pass-band of frequencies received at an input node of the BAW resonator pass-band filter ladder to an output node of the BAW resonator pass-band filter ladder. A first rejection-band series resonator can be coupled in series between an input port of the BAW resonator pass-band filter ladder and the input node, the first rejection-band series resonator can have a first anti-resonant frequency peak in a rejection-band of frequencies that is less than the pass-band of frequencies. A second rejection-band series resonator can be coupled in series between an output port of the BAW resonator filter and the output node, the second rejection-band series resonator can have a second anti-resonant frequency peak in the rejection-band of frequencies.Type: GrantFiled: January 20, 2023Date of Patent: December 5, 2023Assignee: Akoustis, Inc.Inventors: Ya Shen, Michael D. Hodge
-
Patent number: 11832521Abstract: A method of forming a piezoelectric thin film can include depositing a material on a first surface of a Si substrate to provide a stress neutral template layer. A piezoelectric thin film including a Group III element and nitrogen can be sputtered onto the stress neutral template layer and a second surface of the Si substrate that is opposite the first surface can be processed to remove that Si substrate and the stress neutral template layer to provide a remaining portion of the piezoelectric thin film. A piezoelectric resonator can be formed on the remaining portion of the piezoelectric thin film.Type: GrantFiled: April 17, 2020Date of Patent: November 28, 2023Assignee: Akoustis, Inc.Inventors: Craig Moe, Jeffrey M. Leathersich
-
Patent number: 11804819Abstract: A method and structure for single crystal acoustic electronic device. The device includes a substrate having an enhancement layer formed overlying its surface region, a support layer formed overlying the enhancement layer, and an air cavity formed through a portion of the support layer. Single crystal piezoelectric material is formed overlying the air cavity and a portion of the enhancement layer. Also, a first electrode material coupled to the backside surface region of the crystal piezoelectric material and spatially configured within the cavity. A second electrode material is formed overlying the topside of the piezoelectric material, and a dielectric layer formed overlying the second electrode material. Further, one or more shunt layers can be formed around the perimeter of a resonator region of the device to connect the piezoelectric material to the enhancement layer.Type: GrantFiled: March 14, 2022Date of Patent: October 31, 2023Assignee: Akoustis, Inc.Inventor: Jeffrey B. Shealy
-
Patent number: 11736177Abstract: A front end module (FEM) for a 5.6/6.6 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.6/6.6 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.6/6.6 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.6/6.6 GHz PA, a 5.6/6.6 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.Type: GrantFiled: December 7, 2021Date of Patent: August 22, 2023Assignee: Akoustis Inc.Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
-
Patent number: 11728781Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.Type: GrantFiled: September 30, 2021Date of Patent: August 15, 2023Assignee: Akoustis, Inc.Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
-
Patent number: 11711064Abstract: An RF filter system includes a plurality of bulk acoustic wave resonators arranged in a circuit having serial and parallel shunt configurations of resonators. Each resonator having a reflector, a support member including a surface, a first electrode including tungsten, overlying the reflector, a piezoelectric film including crystalline aluminum scandium nitride overlapping the first electrode, a second electrode including tungsten overlapping the piezoelectric film and the first electrode, and a passivation layer including silicon nitride overlying the second electrode. Portions of the support member surface of at least one resonator define a cavity region having a portion of the first electrode of the at least one resonator is located within the cavity region. The pass band circuit response has a bandwidth corresponding to a thickness of at least one of the first electrode, piezoelectric film, second electrode, and passivation layer. The system can include single crystal or polycrystalline BAW resonators.Type: GrantFiled: September 14, 2022Date of Patent: July 25, 2023Assignee: Akoustis, Inc.Inventors: Dae Ho Kim, Mary Winters, Ramakrishna Vetury, Jeffrey B. Shealy
-
Patent number: 11695390Abstract: A resonator circuit device. This device can include a piezoelectric layer having a front-side electrode and a back-side electrode spatially configured on opposite sides of the piezoelectric layer. Each electrode has a connection region and a resonator region. Each electrode also includes a partial mass-loaded structure configured within a vicinity of its connection region. The front-side electrode and the back-side electrode are spatially configured in an anti-symmetrical manner with the resonator regions of both electrodes at least partially overlapping and the first and second connection regions on opposing sides. This configuration provides a symmetric acoustic impedance profile for improved Q factor and can reduce the issues of misalignment or unbalanced boundary conditions associated with conventional single mass-loaded perimeter configurations.Type: GrantFiled: December 22, 2020Date of Patent: July 4, 2023Assignee: Akoustis, Inc.Inventors: Dae Ho Kim, Mary Winters, Zhiqiang Bi
-
Patent number: 11689186Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.Type: GrantFiled: March 24, 2020Date of Patent: June 27, 2023Assignee: Akoustis, Inc.Inventors: Ya Shen, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
-
Patent number: 11683021Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.Type: GrantFiled: December 9, 2019Date of Patent: June 20, 2023Assignee: Akoustis, Inc.Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
-
Patent number: 11677372Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. Patterned electrodes are deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the electrodes and a planarized support layer is deposited over the sacrificial layer. The device can include a dielectric protection layer (DPL) that protects the piezoelectric layer from etching processes that can produce rough surfaces and reduces parasitic capacitance around the perimeter of the resonator when the DPL's dielectric constant is lower than that of the piezoelectric layer. The DPL can be configured between the top electrode and the piezoelectric layer, between the bottom electrode and the piezoelectric layer, or both.Type: GrantFiled: April 14, 2021Date of Patent: June 13, 2023Assignee: Akoustis, Inc.Inventors: Dae Ho Kim, Frank Zhiquang Bi, Mary Winters, Abhay Saranswarup Kochhar, Emad Mehdizadeh, Rohan W. Houlden, Jeffrey B. Shealy