Patents Assigned to AKOUSTIS, INC.
  • Patent number: 12160218
    Abstract: A resonator circuit device. The present invention provides for improved resonator shapes using egg-shaped, partial egg-shaped, and asymmetrical partial egg-shaped resonator structures. These resonator shapes are configured to give less spurious mode/noise below the resonant frequency (Fs) than rectangular, circular, and elliptical resonator shapes. These improved resonator shapes also provide filter layout flexibility, which allows for more compact resonator devices compared to resonator devices using conventionally shaped resonators.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: December 3, 2024
    Assignee: AKOUSTIS, INC.
    Inventors: Zhiqiang Bi, Dae Ho Kim, Pinal Patel, Kathy W. Davis, Rohan W. Houlden
  • Patent number: 11646719
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.170 GHz to 5.835 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: May 9, 2023
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Michael Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11637545
    Abstract: An RF filter system including a plurality of BAW resonators arranged in a circuit, the circuit including a serial configuration of resonators and a parallel shunt configuration of resonators, the circuit having a circuit response corresponding to the serial configuration and the parallel configuration of the plurality of bulk acoustic wave resonators including a transmission loss from a pass band having a bandwidth from 5.490 GHz to 5.835 GHz. Resonators include a support member with a multilayer reflector structure; a first electrode including tungsten; a piezoelectric film including aluminum scandium nitride; a second electrode including tungsten; and a passivation layer including silicon nitride. At least one resonator includes at least a portion of the first electrode located within a cavity region defined by a surface of the support member.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: April 25, 2023
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Michael Hodge, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury, David M. Aichele
  • Patent number: 11496108
    Abstract: A multi-stage matching network filter circuit device. The device comprises bulk acoustic wave (BAW) resonator device having an input node, an output node, and a ground node. A first matching network circuit is coupled to the input node. A second matching network circuit is coupled to the output node. A ground connection network circuit coupled to the ground node. The first or second matching network circuit can include an inductive ladder network including a plurality of series inductors in a series configuration and a plurality of grounded inductors wherein each of the plurality of grounded inductors is coupled to the connection between each connected pair of series inductors. The inductive ladder network can include one or more LC tanks, wherein each of the one or more LC tanks is coupled between a connection between a series inductor and a subsequent series inductor, which is also coupled to a grounded inductor.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: November 8, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Guillermo Moreno Granado, Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11476825
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: October 18, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Rohan W. Houlden, Ya Shen, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11451213
    Abstract: An RF triplexer circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled to the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 20, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Rohan W. Houlden, David M. Aichele, Jeffrey B. Shealy
  • Patent number: 11424728
    Abstract: A method and structure for a transfer process for an acoustic resonator device. In an example, a bulk acoustic wave resonator (BAWR) with an air reflection cavity is formed. A piezoelectric thin film is grown on a crystalline substrate. One or more patterned electrodes are deposited on the surface of the piezoelectric film. An etched sacrificial layer is deposited over the one or more electrodes and a planarized support layer is deposited over the sacrificial layer. The support layer is etched to form one or more cavities overlying the electrodes to expose the sacrificial layer. The sacrificial layer is etched to release the cavities around the electrodes. Then, a cap layer is fusion bonded to the support layer to enclose the electrodes in the support layer cavities.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: August 23, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Dae Ho Kim, Mary Winters, Kenneth Fallon, Jeffrey B. Shealy
  • Patent number: 11245382
    Abstract: A method of manufacture and structure for an acoustic resonator device having a hybrid piezoelectric stack with a strained single crystal layer and a thermally-treated polycrystalline layer. The method can include forming a strained single crystal piezoelectric layer overlying the nucleation layer and having a strain condition and piezoelectric layer parameters, wherein the strain condition is modulated by nucleation growth parameters and piezoelectric layer parameters to improve one or more piezoelectric properties of the strained single crystal piezoelectric layer. Further, the method can include forming a polycrystalline piezoelectric layer overlying the strained single crystal piezoelectric layer, and performing a thermal treatment on the polycrystalline piezoelectric layer to form a recrystallized polycrystalline piezoelectric layer. The resulting device with this hybrid piezoelectric stack exhibits improved electromechanical coupling and wide bandwidth performance.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: February 8, 2022
    Assignee: AKOUSTIS, INC.
    Inventors: Shawn R. Gibb, Craig Moe, Jeff Leathersich, Steven Denbaars, Jeffrey B. Shealy
  • Patent number: 11184079
    Abstract: A front end module (FEM) for a 5.5 GHz Wi-Fi acoustic wave resonator RF filter circuit. The device can include a power amplifier (PA), a 5.5 GHz resonator, and a diversity switch. The device can further include a low noise amplifier (LNA). The PA is electrically coupled to an input node and can be configured to a DC power detector or an RF power detector. The resonator can be configured between the PA and the diversity switch, or between the diversity switch and an antenna. The LNA may be configured to the diversity switch or be electrically isolated from the switch. Another 5.5 GHZ resonator may be configured between the diversity switch and the LNA. In a specific example, this device integrates a 5.5 GHz PA, a 5.5 GHZ bulk acoustic wave (BAW) RF filter, a single pole two throw (SP2T) switch, and a bypassable LNA into a single device.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 23, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, David M. Aichele
  • Patent number: 10985732
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 20, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury
  • Patent number: 10979023
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 13, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, Mary Winters, Ramakrishna Vetury
  • Patent number: 10979024
    Abstract: An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: April 13, 2021
    Assignee: AKOUSTIS, INC.
    Inventors: Jeffrey B. Shealy, Rohan W. Houlden, Shawn R. Gibb, David M. Aichele
  • Patent number: 10879872
    Abstract: A resonator circuit device. This device can include a piezoelectric layer having a front-side electrode and a back-side electrode spatially configured on opposite sides of the piezoelectric layer. Each electrode has a connection region and a resonator region. Each electrode also includes a partial mass-loaded structure configured within a vicinity of its connection region. The front-side electrode and the back-side electrode are spatially configured in an anti-symmetrical manner with the resonator regions of both electrodes at least partially overlapping and the first and second connection regions on opposing sides. This configuration provides a symmetric acoustic impedance profile for improved Q factor and can reduce the issues of misalignment or unbalanced boundary conditions associated with conventional single mass-loaded perimeter configurations.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: December 29, 2020
    Assignee: AKOUSTIS, INC.
    Inventors: Dae Ho Kim, Mary Winters, Zhiqiang Bi
  • Patent number: 10855247
    Abstract: An elliptical-shaped resonator device. The device includes a bottom metal plate, a piezoelectric layer overlying the bottom metal plate, and a top metal plate overlying the piezoelectric layer. The top metal plate, the piezoelectric layer, and the bottom metal plate are characterized by an elliptical shape having a horizontal diameter (dx) and a vertical diameter (dy), which can be represented as ellipse ratio R=dx/dy. Using the elliptical structure, the resulting bulk acoustic wave resonator (BAWR) can exhibit equivalent or improved insertion loss, higher coupling coefficient, and higher quality factor compared to conventional polygon-shaped resonators.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: December 1, 2020
    Assignee: AKOUSTIS, INC.
    Inventors: Dae Ho Kim, Pinal Patel, Rohan W. Houlden, James Blanton Shealy, Jeffrey B. Shealy
  • Patent number: 10855250
    Abstract: A communication system using a single crystal acoustic resonator device. The device includes a piezoelectric substrate with a piezoelectric layer formed overlying a transfer substrate. A topside metal electrode is formed overlying the substrate. A topside micro-trench is formed within the piezoelectric layer. A topside metal with a topside metal plug is formed within the topside micro-trench. First and second backside cavities are formed within the transfer substrate under the topside metal electrode. A backside metal electrode is formed under the transfer substrate, within the first backside cavity, and under the topside metal electrode. A backside metal plug is formed under the transfer substrate, within the second backside cavity, and under the topside micro-trench. The backside metal plug is connected to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside cavity, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 1, 2020
    Assignee: AKOUSTIS, INC.
    Inventors: Shawn R. Gibb, Ramakrishna Vetury, Jeffrey B. Shealy, Mark D. Boomgarden, Michael P. Lewis, Alexander Y. Feldman
  • Patent number: 10855243
    Abstract: A mobile communication system. The system has a housing comprising an interior region and an exterior region and a processing device provided within an interior region of the housing. The system has an rf transmit module coupled to the processing device, and configured on a transmit path. The system has a transmit filter provided within the rf transmit module. In an example, the transmit filter comprises a diplexer filter comprising a single crystal acoustic resonator device.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: December 1, 2020
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 10319898
    Abstract: A single crystal acoustic electronic device. The device has a substrate having a surface region. The device has a first electrode material coupled to a portion of the substrate and a single crystal capacitor dielectric material having a thickness of greater than 0.4 microns and overlying an exposed portion of the surface region and coupled to the first electrode material. In an example, the single crystal capacitor dielectric material is characterized by a dislocation density of less than 1012 defects/cm2. A second electrode material is overlying the single crystal capacitor dielectric material.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: June 11, 2019
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 10217930
    Abstract: A method of manufacture for an acoustic resonator device. The method can include forming a topside metal electrode overlying a piezoelectric substrate with a piezoelectric layer and a seed substrate. A topside micro-trench can be formed within the piezoelectric layer and a topside metal can be formed overlying the topside micro-trench. This topside metal can include a topside metal plug formed within the topside micro-trench. A first backside trench can be formed underlying the topside metal electrode, and a second backside trench can be formed underlying the topside micro-trench. A backside metal electrode can be formed within the first backside trench, while a backside metal plug can be formed within the second backside trench and electrically coupled to the topside metal plug and the backside metal electrode. The topside micro-trench, the topside metal plug, the second backside trench, and the backside metal plug form a micro-via.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: February 26, 2019
    Assignee: AKOUSTIS, INC.
    Inventors: Alexander Y. Feldman, Mark D. Boomgarden, Michael P. Lewis, Jeffrey B. Shealy, Ramakrishna Vetury
  • Patent number: 10211804
    Abstract: A method of fabricating a configurable single crystal acoustic resonator (SCAR) device integrated circuit. The method includes providing a bulk substrate structure having first and second recessed regions with a support member disposed in between. A thickness of single crystal piezo material is formed overlying the bulk substrate with an exposed backside region configured with the first recessed region and a contact region configured with the second recessed region. A first electrode with a first terminal is formed overlying an upper portion of the piezo material, while a second electrode with a second terminal is formed overlying a lower portion of the piezo material. An acoustic reflector structure and a dielectric layer are formed overlying the resulting bulk structure. The resulting device includes a plurality of single crystal acoustic resonator devices, numbered from (R1) to (RN), where N is an integer greater than 1.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 19, 2019
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 10110188
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy