Patents Assigned to AKOUSTIS, INC.
  • Patent number: 10110188
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10110190
    Abstract: A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: October 23, 2018
    Assignee: AKOUSTIS, INC.
    Inventors: Ramakrishna Vetury, Alexander Y. Feldman, Michael D. Hodge, Art Geiss, Shawn R. Gibb, Mark D. Boomgarden, Michael P. Lewis, Pinal Patel, Jeffrey B. Shealy
  • Patent number: 10084588
    Abstract: A mobile communication system. The system has a housing comprising an interior region and an exterior region and a processing device provided within an interior region of the housing. The system has an rf transmit module coupled to the processing device, and configured on a transmit path. The system has a transmit filter provided within the rf transmit module. In an example, the transmit filter comprises a diplexer filter comprising a single crystal acoustic resonator device.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: September 25, 2018
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9917568
    Abstract: A substrate structure for an acoustic resonator device. The substrate has a substrate member comprising a plurality of support members configured to form an array structure. In an example, the substrate member has an upper region, and optionally, has a plurality of recessed regions configured by the support members. The substrate has a thickness of single crystal piezo material formed overlying the upper region. In an example, the thickness of single crystal piezo material has a first surface region and a second surface region opposite of the first surface region.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 13, 2018
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9805966
    Abstract: A method of wafer scale packaging acoustic resonator devices and an apparatus therefor. The method including providing a partially completed semiconductor substrate comprising a plurality of single crystal acoustic resonator devices, each having a first electrode member, a second electrode member, and an overlying passivation material. At least one of the devices to be configured with an external connection, a repassivation material overlying the passivation material, an under metal material overlying the repassivation material. Copper pillar interconnect structures are then configured overlying the electrode members, and solder bump structures are form overlying the copper pillar interconnect structures.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: October 31, 2017
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9716581
    Abstract: A mobile communication system. The system has a housing comprising an interior region and an exterior region and a processing device provided within an interior region of the housing. The system has an rf transmit module coupled to the processing device, and configured on a transmit path. The system has a transmit filter provided within the rf transmit module. In an example, the transmit filter comprises a diplexer filter comprising a single crystal acoustic resonator device.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: July 25, 2017
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9673384
    Abstract: A single crystal acoustic electronic device. The device has a substrate having a surface region. The device has a first electrode material coupled to a portion of the substrate and a single crystal capacitor dielectric material having a thickness of greater than 0.4 microns and overlying an exposed portion of the surface region and coupled to the first electrode material. In an example, the single crystal capacitor dielectric material is characterized by a dislocation density of less than 1012 defects/cm2. A second electrode material is overlying the single crystal capacitor dielectric material.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 6, 2017
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9571061
    Abstract: A configurable single crystal acoustic resonator (SCAR) device integrated circuit. The circuit comprises a plurality of SCAR devices numbered from 1 through N, where N is an integer of 2 and greater. Each of the SCAR device has a thickness of single crystal piezo material formed overlying a surface region of a substrate member. The single crystal piezo material is characterized by a dislocation density of less than 1012 defects/cm2.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 14, 2017
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy
  • Patent number: 9362887
    Abstract: A configurable single crystal acoustic resonator (SCAR) device integrated circuit. The circuit comprises a plurality of SCAR devices numbered from 1 through N, where N is an integer of 2 and greater. Each of the SCAR device has a thickness of single crystal piezo material formed overlying a surface region of a substrate member. The single crystal piezo material is characterized by a dislocation density of less than 1012 defects/cm2.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: June 7, 2016
    Assignee: AKOUSTIS, INC.
    Inventor: Jeffrey B. Shealy