Patents Assigned to Aleris Aluminum Koblenz GmbH
  • Patent number: 9890448
    Abstract: This relates to an aluminum alloy product, in particular an age-hardenable Al—Zn—Mg type alloy product for structural members, the alloy product combining a high strength with high toughness and reduced quench sensitivity, and having a chemical composition including, in wt. %: Zn about 3 to 11%, Mg about 1 to 3%, Cu about 0.9 to 3%, Ge about 0.03 to 0.4%, Si max. 0.5%, Fe max. 0.5%, balance aluminum and normal and/or inevitable elements and impurities. Furthermore, this relates to a method of producing such aluminum alloy products.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: February 13, 2018
    Assignee: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Shangping Chen, Linzhong Zhuang, Sunil Khosla, Hugo Van Schoonevelt, Andrew Norman, Achim Burger
  • Patent number: 9255315
    Abstract: Aluminum alloy plate having improved resistance against incoming kinetic energy projectiles, the plate having a gauge of 10 mm or more and the aluminum alloy having a chemical composition including, in weight percent: Mg 4.0 to 6.0, Mn 0.2 to 1.4, Zn 0.9 max., Zr<0.3, Cr<0.3, Sc?0.5, Ti?0.3, Fe<0.5, Si<0.45, Ag<0.4, Cu<0.25, other elements and unavoidable impurities each <0.05, total <0.20, balance aluminum, and wherein the alloy plate is obtained by a manufacturing process including casting, preheating and/or homogenization, hot rolling, a first cold working operation, an annealing treatment at a temperature of less than 350° C., followed by a second cold working operation.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: February 9, 2016
    Assignee: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Ingo Günther Kröpfl, Claus Jürgen Moritz, Stefan Moldenhauer
  • Publication number: 20150284831
    Abstract: Aluminum alloy plate having improved resistance against incoming kinetic energy projectiles, the plate having a gauge of 10 mm or more and the aluminum alloy having a chemical composition including, in weight percent: Mg 4.0 to 6.0, Mn 0.2 to 1.4, Zn 0.9 max., Zr<0.3, Cr<0.3, Sc?0.5, Ti?0.3, Fe<0.5, Si<0.45, Ag<0.4, Cu<0.25, other elements and unavoidable impurities each <0.05, total <0.20, balance aluminum, and wherein the alloy plate is obtained by a manufacturing process including casting, preheating and/or homogenisation, hot rolling, a first cold working operation, an annealing treatment at a temperature of less than 350° C., followed by a second cold working operation.
    Type: Application
    Filed: May 5, 2014
    Publication date: October 8, 2015
    Applicant: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Ingo Günther KRÖPFL, Claus Jürgen MORITZ, Stefan MOLDENHAUER
  • Patent number: 9039848
    Abstract: An aluminum alloy wrought product including, in wt. %, Mg 3.0 to 7.0, Zn 0.6 to 2.8, Mn 0 to 1.0, Cu 0 to 2.0, Sc 0 to 0.6, at least one element selected from the group of Zr 0.04 to 0.4, Cr 0.04 to 0.4, Hf 0.04 to 0.4 and Ti 0.01 to 0.3; Fe maximum 0.3, Si maximum 0.3, inevitable impurities, and balance aluminum. The range for the Zn-content in wt. % is a function of the Mg-content according to: lower-limit of the Zn-range: [Zn]=0.34[Mg]?0.4, and upper-limit of the Zn-range: [Zn]=0.34[Mg]+0.4.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 26, 2015
    Assignee: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Andrew Norman, Alastair Wise, Achim Burger, Sabine Spangel
  • Patent number: 8877123
    Abstract: The invention relates to an age-hardenable aluminium alloy product for structural members having a chemical composition including, in wt. %: Cu about 3.6 to 6.0%, Mg about 0.15 to 1.2%, Ge about 0.15 to 1.1%, Si about 0.1 to 0.8%, Fe<0.25%, balance aluminium and normal and/or inevitable elements and impurities. Zn, Ag and/or Ni may or may not be present. A typical range for Zn is <0.3 or, in a further embodiment about 0.3 to 1.3%. A typical range for Ag is <0.1 or, in a further embodiment about 0.1 to 1.0%. Products made from this aluminium alloy product are very suitable for aerospace applications. The alloy can be processed to various product forms, e.g. sheet, thin plate, thick plate, extruded or forged products. Products made from this alloy can be used also as a cast product, ideally as die-cast product.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: November 4, 2014
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Linzhong Zhuang, Shangping Chen, Andrew Norman
  • Publication number: 20140224386
    Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminium alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9 Mg?0.6)?Cu?(0.9 Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.
    Type: Application
    Filed: December 27, 2013
    Publication date: August 14, 2014
    Applicant: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Rinze BENEDICTUS, Christian Joachim KEIDEL, Alfred Ludwig HEINZ, Nedia TELIOUI
  • Patent number: 8784999
    Abstract: The invention relates to an extruded or rolled clad metal article having a core metal layer and a cladding metal layer on at least one surface of the core layer, wherein the metals of the core metal layer and the cladding metal layer are each aluminum alloys, preferably an aluminum-magnesium alloy, having at least Sc in a range of 0.05% to 1%, and wherein the Sc-content in the core metal layer is lower than in the cladding metal layer. This further relates to a welded structure incorporating such a metal article.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 22, 2014
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Andrew Norman, Sabine Spangel
  • Publication number: 20140069557
    Abstract: A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, forming the aluminium alloy sheet to obtain a formed BIW part, assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Application
    Filed: November 14, 2013
    Publication date: March 13, 2014
    Applicants: Aleris Aluminum Koblenz GmbH, Aleris Aluminum Duffel BVBA
    Inventors: Axel Alexander Maria SMEYERS, SR., Bruno SCHEPERS, SR., Sabine Maria SPANGEL, Alastair WISE, Ingo Günther Kröpfl, Sunil KHOSLA
  • Patent number: 8613820
    Abstract: A method of manufacturing a formed aluminum alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminum sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminum sheet product has a substantially recrystallized microstructure, (b) forming the aluminum alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminum alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: December 24, 2013
    Assignees: Aleris Aluminum Duffel BVBA, Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpfl, Sunil Khosla
  • Patent number: 8608876
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe<0.25%, and Si<0.12%. Also, a method of manufacturing aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: December 17, 2013
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20130146186
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt.%: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each<0.5 wt. %, and impurities or incidental elements each<0.05, total<0.15, and the balance being aluminium.
    Type: Application
    Filed: February 9, 2013
    Publication date: June 13, 2013
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventor: Aleris Aluminum Koblenz GmbH
  • Patent number: 8455110
    Abstract: A brazing sheet material for CAB brazing without applying flux. The brazing sheet material including an aluminum core alloy layer provided with a first brazing clad layer material on one or both sides of the aluminum core layer and at least one second brazing clad layer material positioned between the aluminum core alloy layer and the first braze clad layer material. The second brazing clad layer material is an Al—Si alloy brazing material having 5% to 20% Si and 0.01% to 3% Mg, and the first brazing clad layer material is an Al—Si alloy brazing material having 2% to 14% Si and less than 0.4% Mg. Also disclosed is a brazed assembly manufactured in a brazing operation.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 4, 2013
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Adrianus Jacobus Wittebrood, Theobald De Haan, Achim Bürger
  • Patent number: 8312916
    Abstract: Method and apparatus employing a casting mould including a liquid feed end for supplying the casting mould with molten second alloy and an exit end with an outlet for casting molten second alloy downwardly. While continuously moving the mould and an elongated solid first alloy substrate relative to one another, casting molten second alloy passes downwardly through at least one outlet of the mould onto an upper surface of the substrate at a temperature wherein the substrate locally at least partly remelts beginning at a reference point of a remelting zone and mixes at least partly with molten second alloy to form an alloy pool. After remelting the molten alloy pool continuously cools and solidifies at a location away from the reference point and joins the substrate to form composite ingot including at least two separately formed layers of one or more alloys before discharging from the mould.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: November 20, 2012
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Joost Christiaan Storm, Andreas Ten Cate, Ingo Günther Kröpfl, Achim Bürger
  • Publication number: 20120090742
    Abstract: A method of manufacturing a formed aluminium alloy body-in-white (“BIW”) part of a motor vehicle, the BIW part having a yield strength of more than 500 MPa after being subjected to a paint-bake cycle. The method includes (a) providing a rolled aluminium sheet product of an AlZnMgCu alloy and having a gauge in a range of 0.5 to 4 mm and subjected to a solution heat treatment (SHT) and quenched following SHT, and wherein the SHT and quenched aluminium sheet product has a substantially recrystallized microstructure, (b) forming the aluminium alloy sheet to obtain a formed BIW part, (c) assembling the formed BIW part with one or more other metal parts to form an assembly forming a motor vehicle component, (d) subjecting the motor vehicle component to a paint bake cycle, wherein the aluminium alloy sheet in the formed BIW part has a yield strength of more than 500 MPa.
    Type: Application
    Filed: June 1, 2010
    Publication date: April 19, 2012
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Axel Alexander Maria Smeyers, Bruno Schepers, Sabine Maria Spangel, Alastair Wise, Ingo Günther Kröpel, Sunil Khosla
  • Patent number: 8158273
    Abstract: The invention relates to an aluminum alloy brazing sheet including: a thin covering material layer, a core material layer, and an Al—Si alloy brazing material layer as an intermediate material interposed between the thin covering material and the core material. The thin covering material and the core material being of aluminum alloys having a solidus temperature higher than a liquidus temperature of the brazing material so that the molten brazing material seeps onto a surface of the thin covering material when the brazing material is molten in a brazing operation. The Al—Si alloy brazing material contains from 0.01 to 0.09% mg, and the aluminum alloy brazing sheet has a total Mg-content of less than 0.06%.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 17, 2012
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventor: Adrianus Jacobus Wittebrood
  • Patent number: 8152943
    Abstract: Manufacturing heat-treatable wrought metal plate having length, width and thickness directions and an engineering properties gradient along at least one plate dimension. Rolled, extruded or forged wrought metal plate is solution heat treated and rapidly cooled. The cooled plate is aged by heat treatment for time to arrive at different tempers across at least one plate dimension (length or width). Controlled heat-input into the plate along its length direction raises plate temperature above ambient temperature to temperature T1, and a temperature gradient is applied between temperature T2 and T3, wherein T2>T3, across at least one direction of the plate by controlled heat-input into the plate from one side (width or thickness) of the plate to temperature T2 and controlled cooling to temperature T3 from the plate at the opposite side of the controlled heat-input, and ageing the plate while applying the temperature gradient between T2 and T3.
    Type: Grant
    Filed: September 20, 2008
    Date of Patent: April 10, 2012
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Andreas ten Cate, Sunil Khosla, Achim Büerger, Sabine Maria Spangel
  • Patent number: 8088234
    Abstract: An AA2000-series alloy including 2 to 5.5% Cu, 0.5 to 2% Mg, at most 1% Mn, Fe <0.25%, Si >0.10 to 0.35%, and a method of manufacturing these aluminum alloy products. More particularly, disclosed are aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: January 3, 2012
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20110259479
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each<0.5 wt. %, and impurities or incidental elements each<0.05, total<0.15, and the balance being aluminium.
    Type: Application
    Filed: July 6, 2011
    Publication date: October 27, 2011
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Nadia Telioui, Steven Dirk Meijers, Andrew Norman, Achim Buerger, Sabine Maria Spangel
  • Patent number: 8043445
    Abstract: The invention relates to an aluminium alloy wrought product with high strength and fracture toughness and high fatigue resistance and low fatigue crack growth rate, and having a composition for the alloy comprising, in weight %, about 0.3 to 1.0% magnesium (Mg), about 4.4 to 5.5% copper (Cu), about 0 to 0.20% iron (Fe), about 0 to 0.20% silicon (Si), about 0 to 0.40% zinc (Zn), and Mn in a range 0.15 to 0.8 as a dispersoids forming element in combination with one or more of dispersoids forming elements selected from the group consisting of: (Zr, Sc, Cr, Hf, Ag, Ti, V), in ranges of: about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 1.0% silver (Ag), the balance being aluminium (Al) and other incidental elements, and whereby there is a limitation of the Cu—Mg content such that ?1.1[Mg]+5.38?[Cu]?5.5. The invention further relates to a method of manufacturing such a product.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 25, 2011
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Hinrich Johannes Wilhelm Hargarter
  • Publication number: 20110204124
    Abstract: This relates to a process for controlled atmosphere brazing including, brazing an aluminium alloy without flux in a controlled atmosphere, while using brazing sheet including an aluminium alloy core upon which on at least one side a layer of filler alloy is clad, the filler clad layer having an inner-surface and an outer-surface, the inner-surface is facing the core, and wherein the filler alloy has a composition which is Na-free, Li-free, K-free, and Ca-free, and including, in wt. %: Si 3% to 15%, Cu 0.3% to 5%, Mg 0.05% to 1%, one or more elements selected from the group of: Bi, Pb, and Sb, and the sum of these elements being 0.35% or less, Fe 0 to 0.6%, Mn 0 to 1.5%, the balance aluminium.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventor: Adrianus Jacobus WITTEBROOD