Patents Assigned to Alfaisal University
  • Patent number: 10599233
    Abstract: The computer mouse device with modified design and functionalities have several touch centres including but not limited to, four finger click buttons, two function buttons and a scroll wheel button, is described. The computer mouse device provides comfort for the hand in prolonged, normal or extensive usage, an enhanced accuracy for pixel accurate applications, and a more immersive and realistic interaction with 3D, virtual or augmented reality environments operating drones, medical instruments, machines, robots or drones, as well as 3D applications including but not limited to 3D CAD applications, video games, virtual or augmented reality.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: March 24, 2020
    Assignee: Alfaisal University
    Inventor: Farid Amalou
  • Patent number: 10520462
    Abstract: An electrochemical screening method for the selection of DNA aptamers against 11-deoxycortisol (11-DCL) using gold electrode for target immobilization is described. The gold electrode is used as solid matrix instead of the beads for SELEX. The selection steps (SELEX) are performed on the 11-DC modified electrode directly as the DNA library in the first round or the enriched DNA pools in the subsequent rounds were incubated on the electrode, then the unbound DNA is washed and the bound DNA is measured directly by square wave voltammetry. Then elution of the bound DNA is performed for further use.
    Type: Grant
    Filed: November 24, 2018
    Date of Patent: December 31, 2019
    Assignee: Alfaisal University
    Inventors: Shimaa Eissa, Mohammed Zourob, Raja Chinnappan, Ayesha Siddiqua
  • Patent number: 10436779
    Abstract: There is provided a biosensor for detecting pathogens in a sample. The detection is based on colorimetry. The biosensor comprises one or more particle supports and a magnetic material attached to a planar support. The biosensor embodies magnetic particles that are functionalized using a chemical substrate specific to the pathogens to be detected. The sensor may allow for a simultaneous detection of a plurality of pathogens in the sample. Also, the sensor may be disposable. Moreover, the sensor may be integrated in a portable detection device.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: October 8, 2019
    Assignee: Alfaisal University
    Inventor: Mohammed Zourob
  • Patent number: 10337047
    Abstract: A multiplex hand-held diagnostic biosensor, using two inflammatory salivary biomarkers, Human Neutrophil Elastase (HNE) and Cathepsin-G, was constructed made to potentially detect Periodontitis at an early stage is described. The use of magnetic nanoparticle biosensor method used as a device was based on the measurement of proteolytic activity using specific proteases probes. The magnetic nanoparticle biosensor device is capable of specific and quantitative detection of HNE and Cathepsin-G in solution and in spiked saliva samples with a lower detection limit of 1 pg/mL and 100 fg/mL for HNE and Cathepsin-G, respectively.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: July 2, 2019
    Assignee: Alfaisal University
    Inventor: Mohammed Zourob
  • Patent number: 10151749
    Abstract: There is provided a method of detecting an analyte in a sample. The method is based on colorimetry and also on the binding affinity between the analyte and a chemical substrate which may be a recognition receptor thereof. The method involves a support and a colored carrier. A kit for use in the detection is also provided.
    Type: Grant
    Filed: September 12, 2015
    Date of Patent: December 11, 2018
    Assignee: Alfaisal University
    Inventor: Mohammed Zourob
  • Patent number: 10149862
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: December 11, 2018
    Assignee: Alfaisal University
    Inventors: Edreese H Alsharaeh, Faheem Ahmed, Nishat Arshi, Yasmin Mussa, Meshael Alturki, Yazeed Aldawsari, Azmat Khan
  • Publication number: 20180031578
    Abstract: High affinity DNA aptamers Seq ID#1-8 for HbA1C and tHb were successfully selected using SELEX after 11 rounds of selection. The tested aptamers bind to HbA1C with dissociation constants in the nanomolar range with the highest affinity aptamer, Seq ID#6, exhibiting a Kd of 2.8 nM. Another aptamer sequence (Seq ID #4) which showed high binding affinity to tHb with a Kd of 2.7 nM was also selected. The HbA1C and tHb-specific aptamers were then applied for the detection of HbA1C % using a voltammetric aptasensor array platform showing remarkable sensitivity and selectivity. The aptasensor array platform was validated using standard human whole blood samples and demonstrated linearity over wide concentration range. The developed platform is superior to current methodologies due to its simplicity, stability and lower cost which will facilitate the early and accurate diagnosis of diabetes.
    Type: Application
    Filed: July 29, 2016
    Publication date: February 1, 2018
    Applicant: Alfaisal University
    Inventors: Shimaa Eissa, MOHAMMED ZOUROB
  • Patent number: 9863962
    Abstract: High affinity DNA aptamers Seq ID#1-8 for HbA1C and tHb were successfully selected using SELEX after 11 rounds of selection. The tested aptamers bind to HbA1C with dissociation constants in the nanomolar range with the highest affinity aptamer, Seq ID#6, exhibiting a Kd of 2.8 nM. Another aptamer sequence (Seq ID #4) which showed high binding affinity to tHb with a Kd of 2.7 nM was also selected. The HbA1C and tHb-specific aptamers were then applied for the detection of HbA1C % using a voltammetric aptasensor array platform showing remarkable sensitivity and selectivity. The aptasensor array platform was validated using standard human whole blood samples and demonstrated linearity over wide concentration range. The developed platform is superior to current methodologies due to its simplicity, stability and lower cost which will facilitate the early and accurate diagnosis of diabetes.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: January 9, 2018
    Assignee: Alfaisal University
    Inventors: Shimaa Eissa, Mohammed Zourob
  • Publication number: 20170334379
    Abstract: A vehicular power system, a vehicle and a method of providing auxiliary power to a vehicle using an auxiliary power unit that uses a molten metal anode solid oxide fuel cell rather than an internal combustion engine. The auxiliary power unit includes a container with numerous fuel cells disposed within it such that when the metal anode is heated, the metal converts to a molten state that can be electrochemically cycled between oxidized and reduced states by oxygen and a fuel present in the molten metal, respectively. The auxiliary power unit further includes a furnace that selectively provides heat to the fuel cells in order to place the anode into its molten metal state. Seals may provide fluid isolation between the molten metal within the container and the ambient environment.
    Type: Application
    Filed: May 19, 2016
    Publication date: November 23, 2017
    Applicants: Saudi Arabian Oil Company, Alfaisal University
    Inventors: Nadimul Haque Faisal, Rehan Ahmed, Matheus F. Goosen, Sai P. Katikaneni, Stamatios Souentie
  • Publication number: 20170136062
    Abstract: A facile approach is described to prepare monodisperse Fe3O4 and Co3O4 nanoparticles on chemically reduced graphene oxide (rGO) to form nanocomposites by low temperature solution route and MWI method, respectively. These processes are environmentally friendly and convenient compared with previously reported methods. The synthesized nanocomposites were characterized using x-ray diffraction spectroscopy (XRD), raman spectroscopy, scanning electron microscopy (SEM) measurements and UV/Vis absorption spectroscopy. XRD patterns revealed the high crystalline quality of the nanocomposites. SEM micrographs showed the morphology of the rGO nanosheets decorated by Co3O4 and Fe3O4 nanoparticles. UV/Vis study revealed the formation of Fe3O4/rGO and Co3O4/rGO nanocomposites with characteristics absorption maxima. Finally, preliminary results of using the Fe3O4/rGO and Co3O4/rGO composites for efficient killing of Human hepatocytes cancer (HepG2) cell are reported.
    Type: Application
    Filed: November 17, 2015
    Publication date: May 18, 2017
    Applicant: ALFAISAL UNIVERSITY
    Inventors: Edreese H. Alsharaeh, Faheem Ahmed, NISHAT ARSHI, YASMIN MUSSA, MESHAEL ALTURKI, YAZEED ALDAWSARI, AZMAT KHAN
  • Publication number: 20170038373
    Abstract: There is provided a biosensor for detecting pathogens in a sample. The detection is based on colorimetry. The biosensor comprises one or more particle supports and a magnetic material attached to a planar support. The biosensor embodies magnetic particles that are functionalized using a chemical substrate specific to the pathogens to be detected. The sensor may allow for a simultaneous detection of a plurality of pathogens in the sample. Also, the sensor may be disposable. Moreover, the sensor may be integrated in a portable detection device.
    Type: Application
    Filed: September 28, 2015
    Publication date: February 9, 2017
    Applicant: Alfaisal University
    Inventor: MOHAMMED ZOUROB
  • Publication number: 20170037450
    Abstract: A multiplex hand-held diagnostic biosensor, using two inflammatory salivary biomarkers, Human Neutrophil Elastase (HNE) and Cathepsin-G, was constructed made to potentially detect Periodontitis at an early stage is described. The use of magnetic nanoparticle biosensor method used as a device was based on the measurement of proteolytic activity using specific proteases probes. The magnetic nanoparticle biosensor device is capable of specific and quantitative detection of HNE and Cathepsin-G in solution and in spiked saliva samples with a lower detection limit of 1 pg/mL and 100 fg/mL for HNE and Cathepsin-G, respectively.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 9, 2017
    Applicant: ALFAISAL UNIVERSITY
    Inventor: MOHAMMED ZOUROB
  • Publication number: 20170038370
    Abstract: There is provided a method of detecting an analyte in a sample. The method is based on colorimetry and also on the binding affinity between the analyte and a chemical substrate which may be a recognition receptor thereof. The method involves a support and a colored carrier. A kit for use in the detection is also provided.
    Type: Application
    Filed: September 12, 2015
    Publication date: February 9, 2017
    Applicant: Alfaisal University
    Inventor: MOHAMMED ZOUROB
  • Patent number: 9334386
    Abstract: The copolymer of styrene and methylmethacrylate containing reduced graphene oxide/silver nanoparticles (PS-PMMA/RGO/AgNPs) nanocomposite were prepared via in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of graphene oxide (GO), styrene (S) and methylmethacrylate monomers (MMA) were polymerized using a bulk polymerization method with a free radical initiator. After the addition silver nitrate (AgNO3), the product was reduced via microwave irradiation (MWI) in presence of the reducing agent hydrazine hydrate (HH), to obtain R-(GO-(PS-PMMA))/AgNPs nanocomposite. This nanocomposite was then used to create a material that had antimicrobial properties to be used in medical devices or medical related implants.
    Type: Grant
    Filed: February 16, 2014
    Date of Patent: May 10, 2016
    Assignee: Alfaisal University
    Inventors: Edreese Housni Alsharaeh, Mohammad Ateeq Aldosari, Ali Abdel-Rahman Mohammad Othman, Mohammed Faour Qasem Al-Hindawi, Khaled Bin Bandar Alsaud
  • Patent number: 9217421
    Abstract: The present disclosure relates to a modified drag based wind turbine apparatus, a method of making the wind turbine and a method of using the wind turbine apparatus. The apparatus is based on a modified drag based concept whereby during a complete turn of the rotor, there will be an augmentation of a positive torque and a decrease of a negative torque resulting in double effect enhancement. The disclosed wind turbine can capture more wind kinetic energy than that energy captured by the traditional drag based wind turbines. The wind turbine apparatus comprises of a turbine supporting frame, a turbine rotor, a sail supporting arm, a sail rotational axis along with sail swinging rods, and extendable and/or shrinkable turbine sails. A simple design and construction is made for cost-effectiveness, and has small as well as large scale scalability.
    Type: Grant
    Filed: February 16, 2015
    Date of Patent: December 22, 2015
    Assignee: Alfaisal University
    Inventor: Hassan Zohair Hassan Ahmed
  • Publication number: 20150065601
    Abstract: The copolymer of styrene and methylmethacrylate containing reduced graphene oxide/silver nanoparticles (PS-PMMA/RGO/AgNPs) nanocomposite were prepared via in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of graphene oxide (GO), styrene (S) and methylmethacrylate monomers (MMA) were polymerized using a bulk polymerization method with a free radical initiator. After the addition silver nitrate (AgNO3), the product was reduced via microwave irradiation (MWI) in presence of the reducing agent hydrazine hydrate (HH), to obtain R-(GO-(PS-PMMA))/AgNPs nanocomposite. This nanocomposite was then used to create a material that had antimicrobial properties to be used in medical devices or medical related implants.
    Type: Application
    Filed: February 16, 2014
    Publication date: March 5, 2015
    Applicant: ALFAISAL UNIVERSITY
    Inventors: Edreese Housni Alsharaeh, Mohammad Ateeq Aldosari, ALI ABDEL-RAHMAN MOHAMMAD OTHMAN, MOHAMMED FAOUR QASEM AL-HINDAWI, Khaled Bin Bandar Alsaud
  • Publication number: 20140323607
    Abstract: A novel nanocomposite having graphene sheets is described. The nanocomposite may be used for medical devices such as bone cement, dentures, paper, paint and automotive industries. A novel Microwave irradiation (MWI) was used to obtain R-(GO-(STY-co-MMA)). The results indicate that the nanocomposite obtained using the MWI had a better morphology and dispersion with enhanced thermal stability compared with the nanocomposite prepared without MWI. An average increase of 136% in hardness and 76% in elastic modulus were achieved through the addition of only 2.0 wt % of RGO nanocomposite obtained via the MWI method.
    Type: Application
    Filed: September 4, 2013
    Publication date: October 30, 2014
    Applicant: ALFAISAL UNIVERSITY
    Inventors: Edreese H. Alsharaeh, Mohammad AlDosari, Ali Abdel-Rahman Mohammad Othman
  • Patent number: 8557916
    Abstract: A dual approach with slight modification was used to produce a nanocomposite using graphene sheets. The nanocomposite may be used for medical devices such as bone cement, dentures, paper, paint and automotive industries. A novel Microwave irradiation (MWI) was used to obtain R-(GO-(STY-co-MMA)). The results indicate that the nanocomposite obtained using the MWI had a better morphology and dispersion with enhanced thermal stability compared with the nanocomposite prepared without MWI. An average increase of 136% in hardness and 76% in elastic modulus were achieved through the addition of only 2.0 wt % of RGO nanocomposite obtained via the MWI method.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: October 15, 2013
    Assignee: Alfaisal University
    Inventors: Edreese H Alsharaeh, Mohammad AlDosari, Ali Abdel-Rahman Mohammad Othman