Patents Assigned to AMO Development, LLC
-
Patent number: 12290474Abstract: A ophthalmic laser-assisted corneal lenticule extraction procedure that uses wavefront measurements to guide the formation of the corneal lenticule. The wavefront map measured from a free eye using a wavefront aberrometer is registered to the cornea of a docked eye based on comparisons of iris images and corneal markings. The docked-eye cornea-registered wavefront map is then corrected to be consistent with the Munnerlyn formula for the spherical power, and adjusted for any physician adjustments and/or myopia error due to a flat add in the lenticule, using Zernike polynomials. The corrected and adjusted wavefront map is then used to calculate the profiles of the bottom and top lenticule incisions in the applanated cornea, where higher-order components in the wavefront map are distributed to the bottom lenticule incision alone and lower-order components in the wavefront map are distributed to both the bottom and the top lenticule incision.Type: GrantFiled: March 1, 2022Date of Patent: May 6, 2025Assignee: AMO Development, LLCInventor: Hong Fu
-
Patent number: 12279991Abstract: Apparatus and method for interfacing an ophthalmic surgical laser system with a patient's eye using a single-piece patient interface (PI). The PI includes a hollow shell, with an applanation lens and a flexible skirt at its lower end. Through channels are formed around the applanation lens to connect the spaces above and below the lens. When the PI is coupled to the laser system and the eye, the upper rim of the shell forms a seal with the laser system and the flexible skirt forms a seal with the eye. A vacuum is applied to the interior of the shell via a vacuum port on the laser system, and the vacuum is communicated to the space enclosed by the applanation lens, the skirt and the eye through the channels around the lens. A magnetic mechanism is also provided to hold the PI shell to the laser system.Type: GrantFiled: April 17, 2023Date of Patent: April 22, 2025Assignee: AMO Development, LLCInventors: Jose L. Garcia, Roger W. Accurso, Daryl Wong, Zenon Witowski
-
Patent number: 12279816Abstract: Devices, systems, and methods that facilitate optical analysis, particularly for the diagnosis and treatment of refractive errors of the eye. An optical diagnostic method for an eye includes obtaining a sequence of aberration measurements of the eye, identifying an outlier aberration measurement of the sequence of aberration measurements, and excluding the outlier aberration measurement from the sequence of aberration measurements to produce a qualified sequence of aberration measurements. The sequence of aberrations measurements can be obtained by using a wavefront sensor. An optical correction for the eye can be formulated in response to the qualified sequence of aberration measurements.Type: GrantFiled: June 24, 2021Date of Patent: April 22, 2025Assignee: AMO Development, LLCInventors: Daniel R. Neal, Thomas D. Raymond, Leander Zickler
-
Patent number: 12251340Abstract: Apparatus to treat an eye with an ophthalmic laser system comprises a patient interface having an annular retention structure to couple to an anterior surface of the eye. The retention structure is coupled to a suction line to couple the retention structure to the eye with suction. Liquid is added above the eye to act as a transmissive medium. A coupling sensor is coupled to the suction line to determine coupling of the retention structure to the eye. A separate pressure monitoring circuit having a much smaller volume than the suction line is connected to the annular retention structure to measure suction pressure therein. A system processor coupled to the monitoring pressure sensor includes instructions to interrupt firing of a laser when the pressure measured with a monitoring pressure sensor rises above a threshold amount.Type: GrantFiled: August 30, 2023Date of Patent: March 18, 2025Assignee: AMO Development, LLCInventors: Phillip Gooding, Christine Beltran, Michael Campos, Jan Wysopal, Brent Eikanas, Rene Hugues
-
Patent number: 12245811Abstract: An apparatus and method: project a plurality of light spots onto a cornea of an eye having a tear film disposed thereon, wherein the light spots are broadband light spots or are narrowband light spots whose bandwidth is tuned in time across a broad bandwidth; image the light spots from the cornea onto at least one two-dimensional detector array; spectrally resolve each of the plurality of imaged light spots; perform interferometry on the spectrally resolved imaged light spots to identify an anterior interface and a posterior interface of the tear film of the eye; and determine a thickness of the tear film as a distance between the anterior interface and the posterior interface.Type: GrantFiled: April 15, 2021Date of Patent: March 11, 2025Assignee: AMO Development, LLCInventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland
-
Patent number: 12220352Abstract: A fiducial is generated on an internal anatomical structure of the eye of a patient with a surgical laser. A toric artificial intraocular lens (IOL) is positioned so that a marker of the toric IOL is in a predetermined positional relationship relative to the fiducial. This positioning aligns the toric IOL with the astigmatic or other axis of the eye. The toric IOL is then implanted in the eye of the patient with high accuracy.Type: GrantFiled: September 1, 2022Date of Patent: February 11, 2025Assignee: AMO DEVELOPMENT, LLCInventors: David D. Scott, David Dewey, Javier Gonzalez
-
Patent number: 12213919Abstract: A patient interface includes an eye interface device, a scanner, a first support assembly, and a beam source. The eye interface device is configured to interface with an eye of a patient. The scanner is configured to be coupled with the eye interface device and operable to scan an electromagnetic radiation beam in at least two dimensions in an eye interfaced with the eye interface device. The scanner and the eye interface device move in conjunction with movement of the eye. The first support assembly supports the scanner so as to accommodate relative movement between the scanner and the first support assembly parallel so as to accommodate movement of the eye. The beam source generates the electromagnetic radiation beam. The electromagnetic radiation beam propagates from the beam source to the scanner along an optical path having an optical path length that varies in response to movement of the eye.Type: GrantFiled: September 15, 2023Date of Patent: February 4, 2025Assignee: AMO Development, LLCInventor: Phillip Gooding
-
Patent number: 12216272Abstract: An ophthalmic laser system uses a non-confocal configuration to determine a laser beam focus position relative to the patient interface (PI) surface. The system includes a light intensity detector with no confocal lens or pinhole between the detector and the objective lens. When the objective focuses the light to a target focus point inside the PI lens at a particular offset from its distal surface, the light signal at the detector peaks. The offset value is determined by fixed system parameters, and can also be empirically determined by directly measuring the PI lens surface by observing the effect of plasma formation at the glass surface. During ophthalmic procedures, the laser focus is first scanned insider the PI lens, and the target focus point location is determined from the peak of the detector signal. The known offset value is then added to obtain the location of the PI lens surface.Type: GrantFiled: October 13, 2023Date of Patent: February 4, 2025Assignee: AMO Development, LLCInventors: Mohammad Saidur Rahaman, Hong Fu, Roger W. Accurso, Zenon Witowski
-
Patent number: 12208037Abstract: A photo detector is selectively coupled to a first integrator or a second integrator with switching circuitry when the laser pulses. An integration time of the signal from the photo detector can be substantially greater than an amount of time between successive laser beam pulses in order to provide an accurate measurement of each laser beam pulse of a high repetition rate pulsed laser. The laser may comprise a clock coupled to an optical switch of the laser system, and control circuitry can control switching and coupling of the detector to the first integrator or the second integrator in response to the clock signal. The first integrator and the second integrator can be selectively coupled to an output such that the first integrator or the second integrator is coupled to the output of the energy detection circuitry when the other integrator is coupled to the detector.Type: GrantFiled: January 27, 2023Date of Patent: January 28, 2025Assignee: AMO Development, LLCInventors: Jan C. Wysopal, Yu-Tai Ray Chen
-
Patent number: 12201560Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in the subject's eye, or just a bottom lenticular incision.Type: GrantFiled: December 9, 2022Date of Patent: January 21, 2025Assignee: AMO Development, LLCInventor: Dimitri A. Chernyak
-
Patent number: 12178754Abstract: A full depth ophthalmic surgical system includes a femtosecond laser source and an optical coherence tomographer. The system is capable of performing surgical procedures along the entire length of the eye from the cornea to the retina. The optical system of the ophthalmic surgical system is optimized to focus the laser beam and imaging light in the vitreous humor of the eye. In some embodiments, the system includes a video camera with a tunable lens before it to image the entire length of the eye. For procedures performed posterior to the lens, a method for calibrating the full depth ophthalmic surgical system is also provided. The system can be used to perform treatment in the vitreous humor, including treating floaters and liquification of the vitreous humor.Type: GrantFiled: October 3, 2022Date of Patent: December 31, 2024Assignee: AMO Development, LLCInventors: Jenny Wang, Tianheng Wang, David Dewey, Michael Wiltberger, Alexander Vankov, Phillip Gooding, Georg Schuele
-
Patent number: 12178752Abstract: A laser system is calibrated with a tomography system capable of measuring locations of structure within an optically transmissive material such as a tissue of an eye. Alternatively or in combination, the tomography system can be used to track the location of the eye and adjust the treatment in response to one or more of the location or an orientation of the eye. In many embodiments, in situ calibration and tracking of an optically transmissive tissue structure such as an eye can be provided. The optically transmissive material may comprise one or more optically transmissive structures of the eye, or a non-ocular optically transmissive material such as a calibration gel in a container or an optically transmissive material of a machined part.Type: GrantFiled: June 29, 2021Date of Patent: December 31, 2024Assignee: AMO Development, LLCInventors: Bruce Woodley, Javier Gonzalez
-
Automated calibration of laser system and tomography system with fluorescent imaging of scan pattern
Patent number: 12150899Abstract: A laser system calibration method and system are provided. In some methods, a calibration plate may be used to calibrate a video camera of the laser system. The video camera pixel locations may be mapped to the physical space. A xy-scan device of the laser system may be calibrated by defining control parameters for actuating components of the xy-scan device to scan a beam to a series of locations. Optionally, the beam may be scanned to a series of locations on a fluorescent plate. The video camera may be used to capture reflected light from the fluorescent plate. The xy-scan device may then be calibrated by mapping the xy-scan device control parameters to physical locations. A desired z-depth focus may be determined by defining control parameters for focusing a beam to different depths. The video camera or a confocal detector may be used to detect the scanned depths.Type: GrantFiled: May 26, 2023Date of Patent: November 26, 2024Assignee: AMO Development, LLCInventors: Michael Simoneau, John Scot Hart, Georg Schuele -
Patent number: 12150900Abstract: An ophthalmic surgical laser system and method for forming a lenticule in a subject's eye using “fast-scan-slow-sweep” scanning scheme. A high frequency scanner forms a fast scan line, which is placed tangential to a parallel of latitude of the surface of the lenticule and then then moved in a slow sweep trajectory along a meridian of longitude of the surface of the lenticule in one sweep. Multiple sweeps are performed along different meridians to form the entire lenticule surface, with the orientation of the scan line rotated between successive sweeps. To generate tissue bridge free incisions without leaving laser-induced marks in the eye, a laser pulse energy between 40 nJ to 70 nJ is used, and the sweeping speed is controlled such that the scan line step (the distance between the centers of consecutive scan lines) is between 1.7 ?m and 2.3 ?m.Type: GrantFiled: November 30, 2021Date of Patent: November 26, 2024Assignee: AMO Development, LLCInventors: Nima Khatibzadeh, Li Bing, Hong Fu
-
Patent number: 12138201Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incision. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to form a top lenticular incision and a bottom lenticular incision of a lens in a corneal stroma.Type: GrantFiled: February 15, 2022Date of Patent: November 12, 2024Assignee: AMO Development, LLCInventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill, Mohammad Saidur Rahaman, Zenon Witowski
-
Patent number: 12128497Abstract: An ophthalmic laser surgical system has a built-in imaging sensor for measuring laser focal spot size. An objective lens focuses the laser beam to a focal spot near a reflective surface, scans the focal spot in the depth direction, and focuses light reflected by the reflective surface to form a back-reflected light. A two-dimensional imaging sensor receives a sample of the back-reflected light to generate images of the back-reflected light. During the depth scan, the image contains a well-focused light spot when the laser focal spot is located at a fixed offset distance before the reflective surface, but the light spot in the images is otherwise defocused. The images generated during the scan are analyzed to find the smallest light spot size among the images. The laser focal spot size is then calculated from the smallest light spot size using a magnification factor which is a system constant.Type: GrantFiled: October 8, 2021Date of Patent: October 29, 2024Assignee: AMO Development, LLCInventors: Mohammad Saidur Rahaman, Hong Fu
-
Patent number: 12121476Abstract: An ophthalmic laser system and related method for forming a lenticular incision in a corneal lenticule extraction procedure. The lenticular incision is formed by multiple sweeps of a laser scan line along meridians of longitude of the lenticular incision, where the end point of each sweep is connected to the start point of the next sweep by a smooth turning trajectory. The trajectory includes a first circular arc tangentially connected to the first sweep at its end point, a second circular arc tangentially connected to the next sweep at its start point, and a straight line segment tangentially connected to both circular arcs. The smooth trajectory is determined with the given limits of velocity, acceleration and jerk of the XY scanning motors, without using high frequency filters to smooth the trajectory, thereby avoiding unknown changes to the original trajectory and achieving high precision lenticule shapes.Type: GrantFiled: April 6, 2022Date of Patent: October 22, 2024Assignee: AMO Development, LLCInventors: Wenzhi Gao, Hong Fu
-
Patent number: 12109151Abstract: Methods and related apparatus for real-time process monitoring during laser-based refractive index modification of an intraocular lens. During in situ laser treatment of the IOL to modify the refractive index of the IOL material, a signal from the IOL is measured to determine the processing effect of the refractive index modification, and based on the determination, to adjust the laser system parameters to achieve intended processing result. The signal measured from the IOL may be a fluorescent signal induced by the treatment laser, a fluorescent signal induced by an external illumination source, a temporary photodarkening effect, a color change, or a refractive index change directly measured by phase stabilized OCT.Type: GrantFiled: December 22, 2022Date of Patent: October 8, 2024Assignee: AMO Development, LLCInventors: Richard Hofer, Alexander Vankov, Jenny Wang, David A. Dewey, Phillip Gooding, Georg Schuele
-
Patent number: 12102565Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.Type: GrantFiled: June 13, 2022Date of Patent: October 1, 2024Assignee: AMO Development, LLCInventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
-
Patent number: 12097148Abstract: In an ophthalmic laser procedure, a lenticule is formed in the cornea and extracted from the cornea to accomplish vision correction. The ophthalmic laser system is used to form top and bottom lenticule incisions which intersect each other to form an isolated volume of corneal tissue in between. The volume of tissue includes a lenticular portion having a circular or oval shape and a side tab that protrudes from the peripheral of the lenticular portion. The side tab has a radial dimension between 0.5 and 5 mm and a width between 0.5 and 3 mm in. An entry cut is further formed from the anterior corneal surface to the top or bottom lenticule incisions to provide access to the lenticule. During extraction, the surgeon uses the surgical tool to grab the side tab to extract the lenticule.Type: GrantFiled: August 30, 2021Date of Patent: September 24, 2024Assignee: AMO Development, LLCInventors: Jose L. Garcia, Griffith E. Altmann