Patents Assigned to AMO Development, LLC
-
Patent number: 12083047Abstract: A first image of the eye is generated when the cornea of the eye is exposed to a gas. The cornea is covered with an optic of a patient interface. A second image of the eye with the patient interface over the cornea is generated. In this second image, the patient interface distorts the second image of the eye. One or more of a position or an orientation of the eye is determined in response to the first image and the second image when the patient interface has been placed over the cornea.Type: GrantFiled: May 26, 2022Date of Patent: September 10, 2024Assignee: AMO Development, LLCInventor: David D. Scott
-
Patent number: 12083046Abstract: The patient interface may comprise an axis for alignment with an axis of the eye such as an optical axis of the eye. The interface may comprise a guide to allow the interface to move along the axis with the eye, which can inhibit increases in intraocular pressure when the patient is aligned with the laser. The interface may comprise a lock to hold the patient interface at a location along the axis, which can maintain alignment of the patient with the laser eye surgery system. The interface may comprise a plurality of transducers to measure forces to the eye during surgery. The laser eye surgery system can be configured in one or more of many ways to respond to the measured forces. For example, the system may offset the position of laser beam pulses to increase the accuracy of the placement of the beam pulses on the eye.Type: GrantFiled: May 26, 2022Date of Patent: September 10, 2024Assignee: AMO Development, LLCInventors: Phillip Gooding, Bruce Robert Woodley
-
Patent number: 12053417Abstract: Embodiments of this invention generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for creating synchronized three-dimensional laser incisions. In an embodiment, an ophthalmic surgical laser system comprises a laser delivery system for delivering a pulsed laser beam to a target in a subject's eye, an XY-scan device to deflect the pulsed laser beam, a Z-scan device to modify a depth of a focus of the pulsed laser beam, and a controller configured to synchronize an oscillation of the XY-scan device and an oscillation of the Z-device to form an angled three-dimensional laser tissue dissection.Type: GrantFiled: June 11, 2021Date of Patent: August 6, 2024Assignee: AMO Development, LLCInventors: Hong Fu, Patrick De Guzman, Robert Heitel, Alireza Malek Tabrizi
-
Patent number: 12053416Abstract: Systems and methods automatically locate optical surfaces of an eye and automatically generate surface models of the optical surfaces. A method includes OCT scanning of an eye. Returning portions of a sample beam are processed to locate a point on the optical surface and first locations on the optical surface within a first radial distance of the point. A first surface model of the optical surface is generated based on the location of the point and the first locations. Returning portions of the sample beam are processed so as to detect second locations on the optical surface beyond the first radial distance and within a second radial distance from the point. A second surface model of the optical surface is generated based on the location of the point on the optical surface and the first and second locations on the optical surface.Type: GrantFiled: September 8, 2023Date of Patent: August 6, 2024Assignee: AMO Development, LLCInventors: Javier Gonzalez, Bruce Woodley
-
Patent number: 12048484Abstract: An instrument includes: an aberrometer; a corneal topographer; an optical coherence tomographer; and a fixation target subsystem. The fixation target subsystem includes a fixation target and a Stokes cell disposed in an optical path between the fixation target and the eye, wherein the Stokes cell includes a first rotation stage having a first cylinder lens and a second rotation stage having a second cylinder lens, wherein; and a controller configured for controlling a rotation of the first rotation stage and the second rotation stage for correcting for an astigmatism of the eye.Type: GrantFiled: April 21, 2021Date of Patent: July 30, 2024Assignee: AMO Development, LLCInventors: Lyle Kordonowy, Daniel Medina
-
Patent number: 12042434Abstract: The XYZ beam position of an ophthalmic laser system is calibrated by measuring a fluorescent signal induced by the focused laser beam in a thin glass coverslip via multiphoton absorption. A video camera measures the XY position and intensity of the fluorescent signal as the focused laser beam strikes the coverslip. The Z position of the focus is determined by scanning the targeted z position and identifying the Z scanner position of peak fluorescence. An OCT system measures the real space Z location of the coverslip, which is correlated with the Z scanner position. Other laser system parameters are assessed by repeatedly scanning a lower energy laser beam in a piece of IOL material, and observing damage (scattering voids) formation in the IOL material. Based on the rate of damage formation, laser system parameters such as beam quality, numerical aperture, pulse energy, and pulse duration, etc. can be assessed.Type: GrantFiled: April 8, 2020Date of Patent: July 23, 2024Assignee: AMO Development, LLCInventors: Alexander Vankov, Jenny Wang, David A. Dewey, Phillip Gooding, Richard Hofer, Georg Schuele
-
Patent number: 12042228Abstract: A laser surgery system includes a light source, an eye interface device, a scanning assembly, a confocal detection assembly and preferably a confocal bypass assembly. The light source generates an electromagnetic beam. The scanning assembly scans a focal point of the electromagnetic beam to different locations within the eye. An optical path propagates the electromagnetic beam from a light source to the focal point, and also propagates a portion of the electromagnetic beam reflected from the focal point location back along at least a portion of the optical path. The optical path includes an optical element associated with a confocal detection assembly that diverts a portion of the reflected electromagnetic radiation to a sensor. The sensor generates an intensity signal indicative of intensity the electromagnetic beam reflected from the focal point location. The confocal bypass assembly reversibly diverts the electromagnetic beam along a diversion optical path around the optical element.Type: GrantFiled: December 23, 2021Date of Patent: July 23, 2024Assignee: AMO Development, LLCInventors: Georg Schuele, Noah Bareket, David Dewey, John S. Hart, Javier G. Gonzalez, Raymond Woo, Thomas Z. Teisseyre, Jeffrey A. Golda, Katrina B. Sheehy, Madeleine C O'Meara, Bruce Woodley
-
Patent number: 12036149Abstract: A laser eye surgery system that has a patient interface between the eye and the laser system relying on suction to hold the interface to the eye, the patient interface using liquid used as a transmission medium for the laser. During a laser procedure sensors monitor the level of liquid within the patient interface and send a signal to control electronics if the level drops below a threshold value. The sensor may be mounted on the inside of the patient interface, within a fluid chamber. Alternatively, a gas flow meter may be added to a suction circuit for the patient interface that detects abnormal suction levels indicating low fluid level.Type: GrantFiled: February 10, 2022Date of Patent: July 16, 2024Assignee: AMO Development, LLCInventors: Phillip H. Gooding, Christine Beltran Ardema, Brent Eikanas, Michael A. Campos
-
Patent number: 12016797Abstract: In a laser cataract procedure that also corrects for astigmatism, an iris registration method compares an iris image of a patient's eye taken when the eye is not docked to a patient interface device with an iris image of the same eye that is docked to the patient interface, to calculate a rotation angle between the two images. The astigmatism axis of the eye is measured when the eye is not docked, and the measured axis is rotated by the calculated rotation angle to obtain a rotated astigmatism axis relative to the iris image of the docked eye. The laser cataract procedure is performed based on the rotated astigmatism axis. The rotation angle is calculated by optimizing a transformation that transforms the undocked iris image to match the docked iris image, where the transformation includes a dilation factor that accounts for different pupil dilation of the two iris images.Type: GrantFiled: January 15, 2023Date of Patent: June 25, 2024Assignee: AMO Development, LLCInventor: Javier Gonzalez
-
Patent number: 12005002Abstract: A corneal lenticule extraction procedure provides convenient re-treatment options when treatment interruptions occur. The procedure is executed by an ophthalmic laser system according to a programmed treatment plan, which defines an entry cut, an optional ring cut, a bottom lenticule incision having an optical zone, and a flat top bed incision. If an interruption occurs during the entry cut, the treatment plan is re-aligned with the partially formed entry cut and continued, or with a new entry cut placed at a different angular position. If an interruption occurs during the ring cut, the treatment plan is revised to define a larger ring cut concentric with the partially formed ring cut. If an interruption occurs during the bottom or top incision, the depth of the partially formed bottom or top incision is measured, and the treatment plan is revised to form a deeper bottom incision or a shallower top incision, respectively.Type: GrantFiled: September 28, 2021Date of Patent: June 11, 2024Assignee: AMO Development, LLCInventors: Hong Fu, Alireza Malek Tabrizi
-
Patent number: 12005001Abstract: In laser-assisted corneal lenticule extraction procedures, the lenticule incision profile includes anterior and posterior lenticule incisions, with one or more of the following features: plano transition zone outside the optical zone, to improve mating of anterior and posterior incision surfaces after lenticule extraction; shallow arcuate incisions above the anterior incision and near the lenticule edge, to improve surface mating; separate ring cut intersecting the anterior and posterior incisions in the transition zone, to reduce tissue bridges and minimize tear at the lenticule edges and facilitate easy lenticule extraction; larger posterior incision, which includes a pocket zone outside the lenticule edge, for better surface mating and bubble management during cutting; and a separate ring shaped pocket cut intersecting the pocket zone of the posterior incision, for bubble management.Type: GrantFiled: August 17, 2021Date of Patent: June 11, 2024Assignee: AMO Development, LLCInventors: Andrew Voorhees, Alireza Malek Tabrizi, Hong Fu, Cynthia Villanueva, Nima Khatibzadeh, Deepali Mehta-Hurt, James Hill, Li Chen, Li Bing
-
Patent number: 11998486Abstract: A system for ophthalmic surgery on an eye includes: a pulsed laser which produces a treatment beam; an OCT imaging assembly capable of creating a continuous depth profile of the eye; an optical scanning system configured to position a focal zone of the treatment beam to a targeted location in three dimensions in one or more floaters in the posterior pole. The system also includes one or more controllers programmed to automatically scan tissues of the patient's eye with the imaging assembly; identify one or more boundaries of the one or more floaters based at least in part on the image data; iii. identify one or more treatment regions based upon the boundaries; and operate the optical scanning system with the pulsed laser to produce a treatment beam directed in a pattern based on the one or more treatment regions.Type: GrantFiled: November 5, 2021Date of Patent: June 4, 2024Assignee: AMO Development, LLCInventors: Daniel V. Palanker, Mark S. Blumenkranz, David H. Mordaunt, Dan E. Andersen
-
Patent number: 11998488Abstract: A compact system for performing laser ophthalmic surgery is disclosed. An embodiment of the system includes a mode-locked fiber oscillator-based ultra-short pulsed laser capable of producing laser pulses in the range of 1 nJ to 5 ?J at a pulse repetition rate of between 5 MHz and 25 MHz, a resonant optical scanner oscillating at a frequency of 200 Hz and 21000 Hz, a scan-line rotator, a movable XY-san device, a z-scan device, and a controller configured to coordinate with the other components of the system to produce one or more desired incision patterns. The system also includes compact visualization optics for in-process monitoring using a beam-splitter inside the cone of a patient interface used to fixate the patient's eye during surgery. The system can be configured such that eye surgery is performed while the patient is either sitting upright, or lying on his or her back.Type: GrantFiled: September 18, 2020Date of Patent: June 4, 2024Assignee: AMO Development, LLCInventors: Hong Fu, Bryant M. Moore, Charles Vice
-
Patent number: 11963722Abstract: A measurement instrument and method: produce light having a linear shape; direct the light toward an eye via a first lens located one focal length from the light source; provide returned light, having the linear shape, from the eye to a split-prism; split the returned light into first and second linear segments; image the first and second linear segments onto an image sensor; determine a first lateral offset between the first and second linear segments on the image sensor at a first time; determine a second lateral offset between the first and second linear segments on the image sensor at a second time; determine a difference between the first and second lateral offsets; and determine a distance that the eye moved relative to the first lens between the first time and the second time based on the difference between the first and second lateral offsets.Type: GrantFiled: April 13, 2021Date of Patent: April 23, 2024Assignee: AMO Development, LLCInventor: Richard J. Copland
-
Patent number: 11963907Abstract: In a laser beam delivery system for an ophthalmic laser system, a single multi-use beam sampler is employed to form three sampled laser beams, including two for redundant laser energy monitoring and one for laser focal point depth measurement. The beam sampler is a transparent plate with preferably parallel front and back surfaces. The front surface reflects a fraction of the incoming beam to form the first sampled beam toward an energy monitoring detector. The back surface reflects another fraction of the beam to form a second sampled beam exiting backwardly from the front surface toward another energy monitoring detector. An objective lens focuses the transmitted beam onto a target, and collects back reflected or scattered light from the target to form a return beam. The back surface of the beam sampler reflects a fraction of the return beam to form the third sampled beam toward a third detector.Type: GrantFiled: September 20, 2021Date of Patent: April 23, 2024Assignee: AMO Development, LLCInventors: Mohammad Saidur Rahaman, Hong Fu
-
Patent number: 11963908Abstract: The amount of energy to provide optical breakdown can be determined based on mapped optical breakdown thresholds of the treatment volume, and the laser energy can be adjusted in response to the mapped breakdown thresholds. The mapping of threshold energies can be combined with depth and lateral calibration in order to determine the location of optical breakdown along the laser beam path for an amount of energy determined based on the mapping. The mapping can be used with look up tables to determine mapped locations from one reference system to another reference system.Type: GrantFiled: June 10, 2019Date of Patent: April 23, 2024Assignee: AMO Development, LLCInventors: David Angeley, Bruce Woodley, David Dewey, Michael Simoneau, Georg Schuele, Gloria Londono
-
Patent number: 11963909Abstract: A method and surgical system including a laser source for generating a pulsed laser beam, an imaging system including a detector, shared optics configured for directing the pulsed laser beam to an object to be sampled and confocally deflecting back-reflected light from the object to the detector, a patient interface, through which the pulsed laser beam is directed, the patient interface having, a cup with a large and small opening, and a notched ring inside the cup; and a controller operatively coupled to the laser source, the imaging system and the shared optics, the controller configured to align the eye for procedure.Type: GrantFiled: October 14, 2019Date of Patent: April 23, 2024Assignee: AMO Development, LLCInventors: John S. Hart, David A. Dewey, Georg Schuele, Phillip H. Gooding, Christine J. Beltran, Javier G. Gonzalez, Katrina B. Sheehy, Jeffrey A. Golda, Raymond Woo, Madeleine C. O'Meara, Noah Bareket, Thomas Z. Teisseyre, Bruce Woodley
-
Patent number: 11957412Abstract: An imaging system for an ophthalmic laser system includes a prism cone made of a transparent optical material and disposed downstream of the focusing objective lens of the ophthalmic laser system, the prism cone having an upper surface, a lower surface parallel to the upper surface, a tapered side surface between the upper and lower surfaces, and a beveled surface formed at an upper edge of the prism cone and intersecting the upper surface and the side surface, and a camera disposed adjacent to the prism cone and facing the beveled surface. The camera is disposed to directly receive light that enters the lower surface of the prism cone and exits the beveled surface without having been reflected by any surface.Type: GrantFiled: November 11, 2019Date of Patent: April 16, 2024Assignee: AMO Development, LLCInventors: Zenon Witowski, Mohammad Saidur Rahaman, Daryl Wong
-
Patent number: 11944575Abstract: Embodiments generally relate to ophthalmic laser procedures and, more particularly, to systems and methods for lenticular laser incisions to form a top lenticular incision, a bottom lenticular incision of a lens in the subject's eye, an added shape between the top and bottom incisions where the added shape has no corrective power and a transition ring bisecting both the top and bottom lenticular incisions.Type: GrantFiled: July 19, 2021Date of Patent: April 2, 2024Assignee: AMO Development, LLCInventors: Alireza Malek Tabrizi, Hong Fu, James E. Hill
-
Patent number: 11931243Abstract: A system and method of treating target tissue in a patient's eye, which includes generating a light beam, deflecting the light beam using a scanner to form first and second treatment patterns, delivering the first treatment pattern to the target tissue to form an incision that provides access to an eye chamber of the patient's eye, and delivering the second treatment pattern to the target tissue to form a relaxation incision along or near limbus tissue or along corneal tissue anterior to the limbus tissue of the patient's eye to reduce astigmatism thereof.Type: GrantFiled: February 17, 2021Date of Patent: March 19, 2024Assignee: AMO Development, LLCInventors: William Culbertson, David Angeley, George R. Marcellino, Dan Andersen