Patents Assigned to AMO Groningen B.V.
  • Patent number: 10288901
    Abstract: An ophthalmic lens with a circular surface structure and limited adjacent echelettes that provides enhanced image quality across an extended range of foci.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: May 14, 2019
    Assignee: AMO GRONINGEN B.V.
    Inventor: Hendrik A. Weeber
  • Patent number: 10265162
    Abstract: An intraocular lens for providing enhanced vision includes an optic having a clear aperture having an outer diameter. The optic has opposing first and second surfaces disposed about an optical axis, the first surface including a cross-sectional profile. The optic further includes central and outer zones that fill the entire clear aperture of the optic. The central zone is disposed about the optical axis having an outer diameter, the profile in the vicinity of the central zone having a constant radius of curvature or a radius of curvature that increases with increasing radius from the optical axis. The outer zone is disposed about the central zone, the profile in the outer zone having a base curvature with a base radius of curvature and a center of curvature, the profile in the outer zone characterized in that, as the distance from the optical axis increases, the distance from the center of curvature of the base curvature also increases. The central zone and the outer zone.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 23, 2019
    Assignee: AMO Groningen B.V.
    Inventor: Theophilus Bogaert
  • Patent number: 10197815
    Abstract: Systems and methods for providing enhanced image quality across a wide and extended range of foci encompass vision treatment techniques and ophthalmic lenses such as contact lenses and intraocular lenses (IOLs). Exemplary IOL optics can include an aspheric refractive profile imposed on a first or second lens surface, and a diffractive profile imposed on a first or second lens surface. The aspheric refractive profile can focus light toward a far focus. The diffractive profile can include a central zone that distributes a first percentage of light toward a far focus and a second percentage of light toward an intermediate focus. The diffractive profile can also include a peripheral zone, surrounding the central zone, which distributes a third percentage of light toward the far focus and a fourth percentage of light toward the intermediate focus.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: February 5, 2019
    Assignee: AMO Groningen B.V.
    Inventor: Hendrik A. Weeber
  • Patent number: 10180585
    Abstract: Systems and methods for providing enhanced image quality across a wide and extended range of foci encompass vision treatment techniques and ophthalmic lenses such as contact lenses and intraocular lenses (IOLs). Exemplary IOL optics can include a circular surface structure which acts as a diffractive or phase shifting profile. In some cases, a single ring IOL includes an anterior face and a posterior face, where a profile can be imposed on the anterior or posterior surface or face. The profile can have an inner portion such as a microstructure or central echelette, and an outer portion. Between the inner portion and the outer portion, there may be a transition zone that connects the inner and outer portions.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: January 15, 2019
    Assignee: AMO Groningen B.V.
    Inventor: Hendrik A. Weeber
  • Patent number: 10159565
    Abstract: An intraocular lens, and a system and method of customizing at least one characteristic for an intraocular lens, in accordance with a regression that indicates the postoperative spherical aberration at the iris plane of a patient aphakic eye, in order to obtain a desired postoperative condition. The lens, system and method of customizing at least one characteristic of an intraocular lens may include measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration and an anterior chamber depth of the eye, and empirically calculating a spherical aberration at an iris or pupil plane of the eye, based on a regression formula comprising at least the corneal spherical aberration and the anterior chamber depth, and cross products thereof.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: December 25, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Marrie H Van Der Mooren, Patricia Ann Piers, Theophilus Bogaert, Sverker Norrby, Carmen Canovas-Vidal
  • Patent number: 10143548
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce optical errors at the location on the peripheral retina.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: December 4, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10136990
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a piggyback lens which in combination with the cornea and an existing lens in the patient's eye redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The piggyback lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the piggyback lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: November 27, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10136805
    Abstract: An intraocular lens, and a system and method of providing an intraocular lens, having at least one characteristic of the intraocular lens customized in accordance with a modified regression that includes a modification for corneal spherical aberration. The lens, system and method may indicate measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration of the eye, applying at least one empirically derived regression calculation, and predictively estimating, in accordance with an output of the at least one empirically derived regression calculation, the at least one characteristic of the intraocular lens to obtain the desired postoperative condition.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: November 27, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Pablo Artal
  • Patent number: 10085833
    Abstract: A method of designing a multifocal ophthalmic lens with one base focus and at least one additional focus, capable of reducing aberrations of the eye for at least one of the foci after its implantation, comprising the steps of: (i) characterizing at least one corneal surface as a mathematical model; (ii) calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model; (iii) modelling the multifocal ophthalmic lens such that a wavefront arriving from an optical system comprising said lens and said at least one corneal surface obtains reduced aberrations for at least one of the foci. There is also disclosed a method of selecting a multifocal intraocular lens, a method of designing a multifocal ophthalmic lens based on corneal data from a group of patients, and a multifocal ophthalmic lens.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: October 2, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Patricia Ann Piers, Hendrik A. Weeber, Sverker Norrby
  • Patent number: 10088384
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 2, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Aixa Alarcon Heredia, Carmen Canovas Vidal, Robert Rosén, Hendrik A. Weeber, Patricia Ann Piers
  • Patent number: 10070952
    Abstract: An apparatus, system and method for constricting a cornea of a human eye are disclosed. A control device external to the subject eye, such as an induction generator, may be configured to create a stimulus, such as a magnetic field, for an implanted ring that, when stimulated, may change the curvature, and thus the dioptric power, of the eye, thereby approximating natural accommodation.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 11, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Luuk Franssen, Hendrik A. Weeber, Marrie H. Van Der Mooren, Carmen Canovas Vidal, Kaccie Y. Li, Sieger Meijer, Richard Hartman
  • Patent number: 10034745
    Abstract: System, ophthalmic lens, and method for extending depth of focus includes an optic having a clear aperture disposed about a central axis. The optic includes a first surface and an opposing second surface. The first and second surfaces are configured to introduce an asymmetric aberration to the eye while maintaining the in-focus visual acuity.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: July 31, 2018
    Assignee: AMO GRONINGEN B.V.
    Inventors: Hendrik A. Weeber, Patricia Ann Piers, Pablo Artal, Silvestre Manzanera
  • Patent number: 10028825
    Abstract: Apparatuses, systems and methods for providing improved intraocular lenses (IOLs), include features for reducing side effects, such as halos, glare and best focus shifts, in multifocal refractive lenses and extended depth of focus lenses. Exemplary ophthalmic lenses can include a continuous, power progressive aspheric surface based on two or more merged optical zones, the aspheric surface being defined by a single aspheric equation. Continuous power progressive intraocular lenses can mitigate optical side effects that typically result from abrupt optical steps. Aspheric power progressive and aspheric extended depth of focus lenses can be combined with diffractive lens profiles to further enhance visual performance while minimizing dysphotopsia effects. The combination can provide an increased depth of focus that is greater than an individual depth of focus of either the refractive profile or the diffractive profile.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: July 24, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Carmen Canovas Vidal, Aixa Alarcon Heredia, Patricia Ann Piers, Hendrik A. Weeber
  • Patent number: 10016270
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing a dual optic intraocular lens which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface to reduce optical errors in an image produced at a peripheral retinal location by light incident at oblique angles.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: July 10, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A. Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri, Patricia Ann Piers
  • Patent number: 10010407
    Abstract: The present disclosure relates to devices, systems, and methods for improving or optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in improving or optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which improve or optimize peripheral vision.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: July 3, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie H Van Der Mooren, Mihai State, Patricia Ann Piers, Aixa Alarcon Heredia
  • Patent number: 9987127
    Abstract: A method, system and apparatus for vision correction are disclosed. The method, system and apparatus include a toric intraocular element for correcting astigmatism and having a cylinder power, and a depth of focus extender coupled to the toric intraocular element, the depth of focus extender extending a depth of focus. The extended depth of focus may reduce sensitivity of the toric intraocular element to at least one of rotation and selected cylinder power.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 5, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Theophilus Bogaert, Hendrik A. Weeber, Huawei Zhao
  • Patent number: 9986906
    Abstract: Embodiments of this invention relate to the generation of wavefronts for measurements, diagnostics, and treatment planning for ophthalmic applications. In some embodiments, a wavefront generator generates light having a uniform wavefront, which is focusable on the retina of an emmetropic eye by the normal function of the emmetropic eye. In some embodiments, the wavefront generator can generate light having a custom wavefront which is not focusable on the retina of the emmetropic eye. In some embodiments, the wavefront generator can receive information relating to an optical aberration of the eye, generate a custom wavefront, and project light having this custom wavefront, which in combination with the optical aberration of the eye is focusable on the retina.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: June 5, 2018
    Assignee: AMO Groningen B.V.
    Inventor: Theophilus Bogaert
  • Patent number: 9931200
    Abstract: The present invention relates to devices, systems, and methods for optimizing peripheral vision. In particular, methods are disclosed which include utilizing particular characteristics of the retina in optimizing peripheral vision. Additionally, various IOL designs, as well as IOL implantation locations, are disclosed which optimize peripheral vision.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 3, 2018
    Assignee: AMO GRONINGEN B.V.
    Inventors: Marrie Van Der Mooren, Carmen Canovas Vidal, Henk A. Weeber, Luuk Franssen, Kaccie Y. Li, Patricia Ann Piers
  • Patent number: 9867693
    Abstract: Systems and methods are provided for improving overall vision in patients suffering from a loss of vision in a portion of the retina (e.g., loss of central vision) by providing symmetric or asymmetric optic with aspheric surface which redirects and/or focuses light incident on the eye at oblique angles onto a peripheral retinal location. The intraocular lens can include a redirection element (e.g., a prism, a diffractive element, or an optical component with a decentered GRIN profile) configured to direct incident light along a deflected optical axis and to focus an image at a location on the peripheral retina. Optical properties of the intraocular lens can be configured to improve or reduce peripheral errors at the location on the peripheral retina. One or more surfaces of the intraocular lens can be a toric surface, a higher order aspheric surface, an aspheric Zernike surface or a Biconic Zernike surface.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: January 16, 2018
    Assignee: AMO Groningen B.V.
    Inventors: Robert Rosen, Hendrik A Weeber, Carmen Canovas Vidal, Marrie Van Der Mooren, Dora Sellitri
  • Patent number: 9823163
    Abstract: A system and method of characterizing through-focus visual performance of an IOL using metrics based on an area under the modulation transfer function for different spatial frequencies at different defocus positions of the IOL. Also disclosed is a system and method of characterizing through-focus visual performance of an IOL using a metric based on an area under a cross-correlation coefficient for an image of a target acquired by the IOL at different defocus positions of the IOL.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 21, 2017
    Assignee: AMO GRONINGEN B.V.
    Inventors: Aixa Alarcon Heredia, Carmen Canovas Vidal, Robert Rosén, Hendrik A. Weeber, Patricia Ann Piers