Patents Assigned to Amphenol Corporation
  • Patent number: 10862228
    Abstract: A cable connector and methods for terminating a coaxial cable to the cable connector, designed to facilitate assembly to and proper termination of the cable with improved grounding between the connector and the cable.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: December 8, 2020
    Assignee: Amphenol Corporation
    Inventors: Rakesh Thakare, Iuliu Cosmin Gordea, Caichun Song, Stefan Nicholas Hoogendoorn, Nicholas Padfield, Keith Mothersdale
  • Patent number: 10855034
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. In some embodiments, the connector is may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. In some embodiments, the modules may have projecting portions, of conductive and/or dielectric material, that are shaped and positioned to reduce changes in impedance along the signal paths as a function of separation of conductive elements, when the connectors are separated by less than the functional mating range.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 1, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, Jr., Donald A. Girard, Jr.
  • Patent number: 10855011
    Abstract: A connector module for an electrical connector that has at least one wafer assembly with at least one conductive member and at least one contact wafer. The contact wafer includes a plurality of contacts including at least one signal contact and at least one ground contact. Each of the contacts has a board engagement end configured to engage a printed circuit board and a mating interface end opposite thereof and configured to connect with a contact of a mating connector module. A grounding gasket receives the board engagement ends of the contacts of the wafer assembly. The grounding gasket has at least one portion in electrical contact with the ground contact of the plurality of contacts. The ground contact of the contact wafer is in electrical contact with both the conductive member and the grounding gasket, thereby defining a grounding path through the connector module to the board.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 1, 2020
    Assignee: Amphenol Corporation
    Inventors: Philip T. Stokoe, Djamel Hamiroune
  • Publication number: 20200373689
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 26, 2020
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, John Robert Dunham, Mark W. Gailus, John Pitten
  • Patent number: 10847930
    Abstract: An interconnection system including a pluggable transceiver and a connector disposed in a cavity of a conductive cage. The pluggable transceiver may include a latching mechanism for locking to the conductive cage. The latching mechanism may include a pair of latches positioned on opposite sides of the pluggable transceiver. The latches may be spatially offset from each other along a longitudinal and/or vertical direction. Corresponding latching tabs in the conductive cage may be disposed in the same relationship, even in a ganged configuration when latching tabs for adjacent cavities are formed in a common wall between cavities. Cammed surfaces of a release mechanism, centered between latching edges of the transceiver latches may impart a latch releasing force at a central portion of the latching tab forcing the lathing tab back into the common wall, reducing rotational moment applied in prior designs, such as QSFP ganged cages.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 24, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark M. Ayzenberg, Jason Si
  • Patent number: 10847937
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: November 24, 2020
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, Donald A. Girard, Jr., David Manter, Tom Pitten, Vysakh Sivarajan, Michael Joseph Snyder
  • Patent number: 10849218
    Abstract: A printed circuit board includes a plurality of layers including attachment layers and routing layers; and via patterns formed in the plurality of layers, each of the via patterns including first and second signal vias forming a differential signal pair, the first and second signal vias extending through at least the attachment layers; ground vias extending through at least the attachment layers, the ground vias including ground conductors; and shadow vias located adjacent to each of the first and second signal vias, wherein the shadow vias are free of conductive material in the attachment layers. The printed circuit board may further include slot vias extending through the attachment layers and located between via patterns.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: November 24, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Marc B. Cartier, Jr., Vysakh Sivarajan, David Levine
  • Patent number: 10840649
    Abstract: A high speed, high density connector has an organizer. Contact tails of the connector pass through the organizer. The organizer has an insulative body. Portions of the organizer are selectively made more conductive by plating on the body. Those plated portions electrically connect contact tails of ground conductors passing through the organizer. The plated portions are lossy or conductive.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 17, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, Jr., Donald A. Girard, Jr.
  • Publication number: 20200350718
    Abstract: Embodiments related to electrical connectors including superelastic components are described. The high elastic limit of superelastic materials compared to conventional connector materials may allow for designs which provide reliable connections and high frequency operation. Superelastic components also may enable connector designs with higher densities of connections. In some embodiments, a connector includes one or more superelastic elongated members forming the mating contacts of the connector. The superelastic elongated members deform within one or more conductive receptacles to generate a suitable contact force. The conductive receptacles may include a plurality of protrusions arranged to deflect the superelastic elongated members during mating. A superelastic component may also be provided in a receiving portion of a connector, and may form a portion of a conductive receptacle.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Applicant: Amphenol Corporation
    Inventors: Tom Pitten, Mark W. Gailus, Marc B. Cartier, JR., David Levine, Donald A. Girard
  • Patent number: 10797412
    Abstract: A high frequency electrical connector that has a conductive shell supporting at least one signal contact therein with a front end for mating with a mating connector and a back end opposite the front end for electrically connecting to a printed circuit board or a coaxial cable. A primary ground connection is located inside of the conductive shell and a secondary ground connection separate from the primary ground connection is located either inside or outside of the conductive shell. The primary and secondary grounding connections define separate grounding paths of the electrical connector.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 6, 2020
    Assignee: Amphenol Corporation
    Inventors: Owen R. Barthelmes, Michael A. Hoyack
  • Patent number: 10797417
    Abstract: A shielded I/O connector that supports high density connections. The shielded connector has a cage with channels. At least a first channel is configured to receive a transceiver such that it may be plugged into a port in a connector housing at an end of the cage. At least a second channel is configured to dissipate heat by enabling air to flow adjacent the transceiver. The rate of air flow in the second channel is increased with a diverter at the end of the second channel to smooth the flow of air through the second channel and out of one or more orifices. The diverter may be simply formed by shaping the housing of a connector at an end of the cage. The orifices may be formed by channel in the connector housing and openings in surfaces of the cage that bound the second channel or the housing channel.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: October 6, 2020
    Assignee: Amphenol Corporation
    Inventors: Michael Scholeno, Craig W. Clewell
  • Publication number: 20200303879
    Abstract: An interconnection system with a compliant shield between a connector and a substrate such as a PCB. The compliant shield may provide current flow paths between shields internal to the connector and ground structures of the PCB. The connector, compliant shield and PCB may be configured to provide current flow in locations relative to signal conductors that provide desirable signal integrity for signals carried by the signal conductors. In some embodiments, the current flow paths may be adjacent the signal conductors, offset in a transverse direction from an axis of a pair of conductors. Such paths may be created by tabs extending from connector shields. A compliant conductive member of the compliant shield may contact the tabs and a conductive pad on a surface of the PCB. Shadow vias, running from the surface pad to internal ground structures may be positioned adjacent the tip of the tabs.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Applicant: Amphenol Corporation
    Inventors: Daniel B. Provencher, Mark W. Gailus, David Manter, Vysakh Sivarajan
  • Patent number: 10770807
    Abstract: An electrical receptacle that has a conductive body and a dielectric assembly received in the conductive body. The dielectric assembly has an entry dielectric portion, a distal support dielectric portion opposite the entry dielectric portion, and a reduced-diameter dielectric portion therebetween. An air region is defined between the inner surface of the conductive body and the reduced-diameter dielectric portion. An outer conductor is coupled to the conductive body and receives at least part of the entry dielectric portion. An inner contact is received in the dielectric assembly and has a mating interface end for receiving a corresponding mating contact, a termination end for coupling to a printed circuit board or adapter contact, and an inner through bore therebetween.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 8, 2020
    Assignee: Amphenol Corporation
    Inventor: James T. Smith
  • Patent number: 10770839
    Abstract: A method of assembling an electrical connector that is configured for mounting to a printed circuit board. The method has the steps of providing contact wafers with a plurality of contacts; bending the tail ends of each contact wafer; interleaving the contact wafers to form one or more contact wafer assemblies; loading the contact wafer assemblies into an insert of the electrical connector, such that the one or more contact wafer assemblies form a predetermined arrangement of mating ends of the plurality of contacts at a mating interface of the electrical connector; and inserting the insert into a shell of the electrical connector.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 8, 2020
    Assignee: Amphenol Corporation
    Inventors: Zlatan Ljubijankic, Barbara H. Marten, Ming Jong, Andy Toffelmire
  • Publication number: 20200274301
    Abstract: Connector assemblies that may be used to connect a cable to one or more contact tails of an electrical connector are disclosed. Some connector assemblies may include a wire extending from a cable and attached to an edge of a contact tail of a signal conductor. At least a portion of the wire may be flattened to form a planar surface that is attached to a corresponding planar surface of the edge of the contact tail. Moreover, some connector assemblies may include a wire extending from a cable that is attached to an edge of a contact tail via a metallurgical bond extending along at least a portion of an attachment interface between the wire and the contact tail.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 27, 2020
    Applicant: Amphenol Corporation
    Inventors: David Manter, Vysakh Sivarajan
  • Publication number: 20200266585
    Abstract: An interconnection system with lossy material of a first connector adjacent a ground conductor of a second connector. The lossy material may damp resonances at a mating interface of the first and second connectors. In some embodiments, the lossy material may be attached to a ground conductor of the first connector. In some embodiments, the lossy material may be shaped as horns that extend along a cavity configured to receive a ground conductor of a mating connector.
    Type: Application
    Filed: February 19, 2020
    Publication date: August 20, 2020
    Applicant: Amphenol Corporation
    Inventors: Jose Ricardo Paniagua, Philip T. Stokoe, Thomas S. Cohen, Bob Richard, Donald W. Milbrand, Eric Leo, Mark W. Gailus
  • Publication number: 20200259297
    Abstract: A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion. Broadside coupling provides balanced pairs for very high frequency operation. The connector may be assembled with multiple subassemblies, each of which may have multiple pairs of signal conductors. The subassemblies may be formed from an insulative portion having grooves in opposite sides into which the intermediate portions of signal conductors. Covers, holding the signal conductors in the grooves, may establish the position of the signal conductors relative to reference conductors at the exterior of subassembly, so as to provide a controlled impedance. Lossy material may be positioned between the pairs in a subassembly and/or may contact the reference conductors of the subassemblies, and the lossy material of the subassemblies may in turn be connected with a conductive structure.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 13, 2020
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, Donald A. Girard, JR., Brian Kirk, David Levine, Vysakh Sivarajan
  • Patent number: 10741940
    Abstract: An electrical connector has a first wafer having a first housing with a first plurality of contact beams extending from the first housing in a first plane. A second wafer has a second housing with a second plurality of contact beams extending from said second housing in a second plane substantially parallel to the first plane. A dividing panel member extends from the insulative housing between the first plurality of contact beams and the second plurality of contact beams. Each of the contact beams extending from the wafer pair is configured to mate with a corresponding backplane contact in a backplane connector. The contact beams extending from the wafer pair and the backplane contacts are configured such that each pair of corresponding contacts includes a first contact point and a second contact point. When the wafer pair is fully received by the backplane connector, contact between the contact beam and the backplane contact is maintained at both the first and second contact points.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: August 11, 2020
    Assignee: Amphenol Corporation
    Inventor: Philip T. Stokoe
  • Patent number: D899376
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 20, 2020
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk
  • Patent number: D902158
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk