Patents Assigned to Analog Devices, Inc.
  • Patent number: 10691926
    Abstract: The present disclosure relates to performing facial recognition using a single-pixel sensor that measures the time signature of a light pulse reflected from a subjects face. Due to depth differences between the sensor position and different parts of the subject's face reflections of a short duration illumination pulse from the different parts of the subject's face will arrive back at the sensor at different times, thus providing a time-based one-dimensional signature unique to the individual subject. By analyzing the reflection signature using neural networks or principal component analysis (PCA), recognition of the subject can be obtained. In addition, the same system may also be used to recognize or discriminate between any other objects of known shape in addition to faces, for example manufactured products on a production line, or the like.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: June 23, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Maurizio Zecchini, Paul O'Sullivan, Chao Wang
  • Patent number: 10692967
    Abstract: A self-routing capacitor for an integrated circuit having: a first electrode comprising a first base region and a first finger, the first finger extending from a wall of the first base region in a first direction; a second electrode comprising a second base region and a second finger; the second finger extending from a wall of the second base region in a second direction substantially parallel to and opposing the first direction, the second finger coupled to the first finger; a third electrode comprising a third base region and a third finger, the third finger extending from a first wall of the third base in the second direction; and a fourth electrode comprising a fourth finger, the fourth finger extending from a second wall of the third base region in the first direction. The capacitor being coupled to other metal layers through a base region of an electrode.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: June 23, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Baozhen Chen, Lalinda D. Fernando, Micah Galletta O'Halloran, Andrew Wayne Shaw
  • Publication number: 20200195265
    Abstract: Improved track and hold (T/H) circuits can help analog-to-digital converters (ADCs) achieve higher performance and lower power consumption. The improved T/H circuits can drive high speed and interleaved ADCs, and the design of the circuits enable additive and multiplicative pseudo-random dither signals to be injected in the T/H circuits. The dither signals can be used to calibrate (e.g., linearize) the T/H circuits and the ADC(s). In addition, the dither signal can be used to dither any remaining non-linearity, and to calibrate offset/gain mismatches in interleaved ADCs. The T/H circuit design also can integrate an amplifier in the T/H circuit, which can be used to improve the signal-to-noise ratio (SNR) of the ADC or to act as a variable gain amplifier (VGA) in front of the ADC.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 18, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Ahmed Mohamed Abdelatty ALI, Frank MURDEN, Peter DELOS, Ralph D. MOORE
  • Publication number: 20200193640
    Abstract: An image processing system having on-the-fly calibration uses the placement of the imaging sensor and the light source for calibration. The placement of the imaging sensor and light source with respect to each other affect the amount of signal received by a pixel as a function of distance to a selected object. For example, an obstruction can block the light emitter, and as the obstruction is positioned an increasing distance away from the light emitter, the signal level increases as light rays leave the light emitters, bounce off the obstruction and are received by the imaging sensor. The system includes a light source configured to emit light, and an image sensor to collect incoming signals including reflected light, and a processor to determine a distance measurement at each of the pixels and calibrate the system.
    Type: Application
    Filed: October 25, 2019
    Publication date: June 18, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Charles MATHY, Brian C. DONNELLY, Nicolas LE DORTZ, Sefa DEMIRTAS
  • Patent number: 10684531
    Abstract: A light beam can be steered using a non-mechanical beam steerer structure. For example, a combination of sub-aperture and full-aperture beam steering structures can be used (e.g., corresponding to regions of controlled variation in an index of refraction). The sub-aperture elements can include tapered structures defining a saw-tooth or triangular footprint in the plane in which the in-plane steering is performed. Respective rows of sub-aperture tapered structures can be configured to controllably steer the light beam in the first in-plane direction, wherein at least one row of sub-aperture tapered structures defines a first base region edge that is tipped at a first specified in-plane angle relative to a second base region edge defined by another row. Use of the tipped configuration can simplify a configuration of the beam steerer structure, such as allowing a configuration lacking a compensation plate at the input.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 16, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Michael Ziemkiewicz, Tyler Adam Dunn, Michael Howard Anderson, Scott Robert Davis
  • Patent number: 10684728
    Abstract: Capacitive sensing can be used to measure electrostatic features of a space. Rudimentary capacitive sensing can be blurry. For instance, the resolution of a capacitive sensor generating a simple electric field is not very high, and the response to the simple electric field is also not very high. Using many capacitive sensors and special sets of excitation signals exciting the capacitive sensors, the capacitive sensors can generate specialized electrostatic fields. Because the specialized electrostatic fields provide different views of the space, enhanced inferences can be made from measurements of responses to those specialized electrostatic fields. Selecting certain specialized electrostatic fields can allow capacitive sensors to sense a focused region of the space. Repeating the steps with varied electrostatic fields can allow capacitive sensors to make enhanced inferences for many focused regions of the space, thereby increasing the resolution of capacitive sensing.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: June 16, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventor: David Wingate
  • Patent number: 10677918
    Abstract: A MIMO radar transceiver assembly includes a plurality of transceiver circuit regions and a plurality of antennas. The plurality of antennas include a first transmit antenna coupled to a first transceiver circuit region among the plurality of transceiver circuit regions, a first receive antenna coupled to the first transceiver circuit region, a second transmit antenna coupled to a second transceiver circuit region among the plurality of transceiver circuit regions, and a second receive antenna coupled to the second transceiver circuit region. At least one of the second transmit antenna and the second receive antenna is interleaved between the first transmit antenna and the first receive antenna. Interleaving of the antennas can increase virtual aperture and angular resolution of the radar system without increasing physical dimensions of the transceiver assembly.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: June 9, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Xueru Ding, Michael S. Allen
  • Publication number: 20200175848
    Abstract: Comprehensive system for fire detection and implementing thereof. The disclosed system combines and optimizes optical, electrical, and sensor sub-systems to provide the functionality demanded by the market. While many of the individual functions exist separately, none of the existing products combine elements from different sub-systems to provide a much higher level of functionality. The present disclosure shows how to build a very compact housing around the smoke detector while keeping the reflections from the housing structure to a very low value while satisfying all the other peripheral needs of fast response to smoke and preventing ambient light. This allows very small measurements of light scattering of the smoke particles to be reliable in a device resistant to the negative effects of dust.
    Type: Application
    Filed: December 1, 2019
    Publication date: June 4, 2020
    Applicant: Analog Devices, Inc.
    Inventor: Shrenik DELIWALA
  • Patent number: 10673416
    Abstract: Circuits and techniques are described for reducing the impact of environmental noise and interference on the output signal of a capacitive sensor. The output signal is sampled randomly in some situations by generating a random sampling instant within a fixed clock period. The sampling is performed by a sampling or demodulation circuit. The demodulation circuit may be part of a larger circuit with various components that operate based on a fixed period clock signal.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: June 2, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Thomas W. Kelly, Ekin Yagmur Gonen
  • Patent number: 10670712
    Abstract: Disclosed systems and methods include a multiple-in-multiple-out (“MIMO”) antenna array, wherein the arrangement of antenna elements provide relatively good angular resolution for RADAR while reducing the presence of grating lobes. Transmitter and receiver antenna elements can be spaced such as to improve performance with reduced cost. In some embodiments, the transmitter and/or receiver antenna elements can be spaced at unit distances of a half-wavelength +/?10% or +/?25%. In some embodiments, the first receiver antenna element is at a four-unit distance from a second receiver antenna element, a third receiver antenna element at a one-unit distance from the second receiver antenna element, and a fourth receiver antenna element at a two-unit distance from the third receiver antenna element.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: June 2, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventor: Xueru Ding
  • Patent number: 10663325
    Abstract: Fiber Bragg grating interrogation and sensing used for strain and temperature measurements. A simple, broadband light source is used to interrogate one or more fiber Bragg grating (FBG). Specifically, a packaged LED is coupled to fiber, the light therefrom is reflected off a uniform FBG. The reflected light is subsequently analyzed using a filter and a plurality of Si photodetectors. In particular, the filter is a chirped FBG or an optically coated filter, in accordance with some embodiments. Measurement analysis is performed by ratio of intensities at the plurality of detectors, at least in part.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: May 26, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventor: Shrenik Deliwala
  • Publication number: 20200161502
    Abstract: A device emitting mid-infrared light that comprises a semiconductor substrate of GaSb or closely related material. The device can also comprise epitaxial heterostructures of InAs, GaAs, AlSb, and related alloys forming light emitting structures cascaded by tunnel junctions. Further, the device can comprise light emission from the front, epitaxial side of the substrate.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 21, 2020
    Applicant: Analog Devices, Inc.
    Inventors: Shrenik Deliwala, Ryan Michael Iutzi
  • Publication number: 20200162092
    Abstract: Improved track and hold (T/H) circuits can help analog-to-digital converters (ADCs) achieve higher performance and lower power consumption. The improved T/H circuits can drive high speed and interleaved ADCs, and the design of the circuits enable additive and multiplicative pseudo-random dither signals to be injected in the T/H circuits. The dither signals can be used to calibrate (e.g., linearize) the T/H circuits and the ADC(s). In addition, the dither signal can be used to dither any remaining non-linearity, and to calibrate offset/gain mismatches in interleaved ADCs. The T/H circuit design also can integrate an amplifier in the T/H circuit, which can be used to improve the signal-to-noise ratio (SNR) of the ADC or to act as a variable gain amplifier (VGA) in front of the ADC.
    Type: Application
    Filed: December 23, 2019
    Publication date: May 21, 2020
    Applicant: Analog Devices, Inc.
    Inventor: Ahmed Mohamed Abdelatty ALI
  • Patent number: 10656254
    Abstract: A sampled analog beamformer for ultrasound beamforming includes an array of transducers for transmitting analog signals and receiving reflected analog signals, and a sampled analog filter for filtering the received reflected analog. The sampled analog filter includes a delay line for adding a delay to each of the received reflected analog signals. Using a sampled analog filter in an ultrasound beamforming system reduces the power usage of the system and decreases the number of components in the system.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: May 19, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventor: Eric G. Nestler
  • Patent number: 10659065
    Abstract: Apparatus and methods for phase synchronization of phase-locked loops (PLLs) are provided. In certain configurations, an RF communication system includes a PLL that generates one or more output clock signals and a phase synchronization circuit that synchronizes a phase of the PLL. The phase synchronization circuit includes a sampling circuit that generates samples by sampling the one or more output clock signals based on timing of a reference clock signal. Additionally, the phase synchronization circuit includes a phase difference calculation circuit that generates a phase difference signal based on the samples and a tracking digital phase signal representing the phase of the PLL. The phase synchronization circuit further includes a phase adjustment control circuit that provides a phase adjustment to the PLL based on the phase difference signal so as to synchronize the PLL.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: May 19, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Christopher Mayer, David J. McLaurin, Christopher W. Angell, Sudhir Desai, Steven R. Bal
  • Patent number: 10659069
    Abstract: Analog circuits are often non-linear, and the non-linearities can hurt performance. Designers would trade off power consumption to achieve better linearity. An efficient and effective calibration technique can address the non-linearities and reduce the overall power consumption. A dither signal injected to the analog circuit can be used to expose the non-linear behavior in the digital domain. To detect the non-linearities, a counting approach is applied to isolate non-linearities independent of the input distribution. The approach is superior to and different from other approaches in many ways.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: May 19, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Ahmed Mohamed Abdelatty Ali, Paridhi Gulati
  • Patent number: 10658264
    Abstract: The disclosed technology generally relates to integrated circuit (IC) packages, and more particularly to integrated circuit packages comprising perforated diamond-based heat spreading substrates. In one aspect, a heat spreading substrate for an IC die is configured to be attached to an IC die and to spread heat away therefrom. The diamond-based heat spreading substrate can have an electrically conductive surface and an array of vias formed therethrough. At least one of the vias is configured to overlap an edge of the IC die when attached to the diamond-based heat spreading substrate.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: May 19, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Jin Zou, Gary T. Wenger
  • Patent number: 10659150
    Abstract: Data isolators for providing isolation between two ports that enable dynamic communication are described. The dynamic communication may be achieved by varying a ratio of the data rate relative to a clock frequency of a clock signal. The data isolator may include a first circuit that transmits data across an isolation barrier when the clock signal is in a first state and a second circuit that transmits data across the isolation barrier when the clock signal is in a second state. The clock frequency may be variable and, as a result, change the duration of data transmissions in a given clock cycle. For example, the clock frequency may be reduced to increase the number of bits transmitted per clock cycle and, conversely, increased to reduce the number of bits transmitted per clock cycle. Thus, the number of bits transmitted per clock cycle may be adjusted to suit the situation.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: May 19, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Lawrence Getzin
  • Publication number: 20200153445
    Abstract: Multiplying digital-to-analog converter (MDACs) are implemented in pipelined ADCs to generate an analog output being fed to a subsequent stage. A switched capacitor MDAC can be implemented by integrating a capacitor digital-to-analog converter (DAC) with charge pump gain circuitry. The capacitor DAC can implement the DAC functionality while the charge pump gain circuitry can implement subtraction and amplification. The resulting switched capacitor MDAC can leverage strengths of nanometer process technologies, i.e., very good switches and highly linear capacitors, to achieve practical pipelined ADCs. Moreover, the switched capacitor MDAC has many benefits over other approaches for implementing the MDAC.
    Type: Application
    Filed: January 19, 2020
    Publication date: May 14, 2020
    Applicant: Analog Devices, Inc.
    Inventor: Ralph D. MOORE
  • Patent number: 10649948
    Abstract: Disclosed herein are two-wire communication systems and applications thereof. In some embodiments, a slave node transceiver for low latency communication may include upstream transceiver circuitry to receive a first signal transmitted over a two-wire bus from an upstream device and to provide a second signal over the two-wire bus to the upstream device; downstream transceiver circuitry to provide a third signal downstream over the two-wire bus toward a downstream device and to receive a fourth signal over the two-wire bus from the downstream device; and clock circuitry to generate a clock signal at the slave node transceiver based on a preamble of a synchronization control frame in the first signal, wherein timing of the receipt and provision of signals over the two-wire bus by the node transceiver is based on the clock signal.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: May 12, 2020
    Assignee: ANALOG DEVICES, INC.
    Inventors: Martin Kessler, Miguel Chavez, Lewis F. Lahr, William Hooper, Robert Adams, Peter Sealey