Patents Assigned to Analog Devices, Inc.
  • Patent number: 8829955
    Abstract: A multi-channel isolation system has N+1 isolators for N channels of communication data. N of the isolators may transfer data signals across an isolation barrier, one for each of the N channels of data. An N+1st isolator transfers refresh signals representing state of the data signals on the N isolators. Receiver circuitry, therefore, may receive signals from the N isolation channels without risk for collision with refresh signals. If reception of the refresh signals becomes necessary, circuitry on a receive side of the isolator may switch over to the N+1st receive path to output state data contained in the refresh signals.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 9, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Bikiran Goswami
  • Publication number: 20140250041
    Abstract: In a data processing system, a method for implementing a factor graph having variable nodes and function nodes connected to each other by edges includes implementing a first function node and a on a first computer system, the first computer system being in network communication with a second computer system; establishing a network connection to each of a plurality of processing systems; receiving, at the first function node, soft data from a variable node implemented on one of the processing systems, the soft data including an estimate of a value and information representative of an extent to which the estimate is believed to correspond to a correct value; and transmitting, from the first function node to the one of the processing systems, soft data representing an updated estimate of the value.
    Type: Application
    Filed: February 22, 2011
    Publication date: September 4, 2014
    Applicant: Analog Devices, Inc.
    Inventor: Benjamin Vigoda
  • Patent number: 8824626
    Abstract: A detector circuit can include an integrator having an amplifier, a first feedback capacitor connected between an input and output of the amplifier, one or more additional feedback capacitors connected by at least one switch between the input and output of the amplifier, and a shunt capacitor connected to the output of the amplifier. The shunt capacitor can be selected to have a capacitance value greater than that of a minimum but less than that of a maximum feedback capacitance. The detector circuit can further include a sampling circuit having a sampling capacitor connected to the output of the integrator amplifier through at least one switch, wherein the sampling capacitor is separate from the shunt capacitor. A computed tomography imaging apparatus can include the detector circuit.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 2, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Michael Coln, Paraic Brannick, Colin G. Lyden, Cathal Murphy
  • Patent number: 8824980
    Abstract: A system and method provide for a radio transmitter with digital predistortion. The radio transmitter includes a high output power narrowband upconverter and a low output power wideband upconverter. In a stage of the radio transmitter, digital predistortion is applied to transmit data by setting digital coefficients by a digital predistortion algorithm, resulting in a predistortion signal. A predistortion signal is separated into a narrowband component and a wideband component, where the narrowband component corresponds to a desired traffic signal and the wideband component corresponds to a digital predistortion signal reflecting separated digital predistortion correction products. The narrowband upconverter provides a transmission path for a desired traffic signal or transmit data (the narrowband component of the digital predistortion signal), while the wideband upconverter provides a transmission path for the wideband component representing digital predistortion correction products.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Analog Devices, Inc.
    Inventor: David J. McLaurin
  • Patent number: 8823465
    Abstract: A clock generator is disclosed for use with an oscillator device. The clock generator may include a signal conditioning pre-filter and a comparator. The signal conditioner may have an input for a signal from the oscillator device, and may include a high pass filter component and a low pass filter component. The high pass filter component may pass amplitude and frequency components of the input oscillator signal but reject a common mode component of the oscillator signal. Instead, the high pass filter component further may generate its own common mode component locally over which the high frequency components are superimposed. The low pass filter component may generate a second output signal that represents the locally-generated common mode component of the first output signal. The clock generator may have a comparator as an input stage which is coupled to first and second outputs of the filter structure.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 2, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Donal Bourke, Dermot O'Keeffe
  • Patent number: 8816887
    Abstract: A sampling circuit comprising: an input node; a first signal path comprising a first sampling capacitor and a first signal path switch in a signal path between the input node and a first plate of the first sampling capacitor; a second signal path comprising a second sampling capacitor and a second signal path switch in a signal path between the input node and a first plate of the second sampling capacitor, and a signal processing circuit for forming a difference between a signal sampled onto the first sampling capacitor and a signal sampled onto the second sampling capacitor.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 26, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Christopher Peter Hurrell, Roberto Maurino
  • Patent number: 8815624
    Abstract: A method of forming a capped die forms a cap wafer having a top side and a bottom side. The bottom side is formed with 1) a plurality of device cavities having a first depth, and 2) a plurality of second cavities that each have a greater depth than the first depth. At least some of the plurality of second cavities each generally circumscribe at least one of the device cavities. The method then secures the cap wafer to a device wafer in a manner that causes a plurality of the device cavities each to circumscribe at least one of circuitry and structure on the device wafer. Next, the method removes at least a portion of the top side of the cap wafer to expose the second cavities. This forms a plurality of caps that each protect the noted circuitry and structure.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Mitul Dalal, Li Chen
  • Patent number: 8816280
    Abstract: An infrared sensor, comprising at least one pixel comprising a first sensor and a second sensor, wherein the first and second sensors are dissimilar.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: August 26, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Paul Martin Lambkin, William Allan Lane
  • Patent number: 8816773
    Abstract: Apparatus and methods are disclosed related to trimming an input offset current of an amplifier. One such apparatus can include auxiliary bipolar transistors connected in parallel with bases of respective bipolar transistors of an input stage of an amplifier. The auxiliary bipolar transistors can be biased such that the base currents of the auxiliary bipolar transistors compensate for a mismatch in base currents of the bipolar transistors of the input stage of an amplifier. The offset current at an input of an amplifier can be reduced independent of an offset voltage at the input of the amplifier.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 26, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Moshe Gerstenhaber, Rayal Johnson
  • Patent number: 8816389
    Abstract: An overvoltage protection devices operable to provide protection against overvoltage events of positive and negative polarity, comprising: an N P N semiconductor structure defining: a first N-type region; a first P-type region; and a second N-type region; wherein one of the first or second N-type regions is connected to a terminal, conductor or node that is to be protected against an overvoltage event, and the other one of the first or second N-type regions is connected to a reference, and wherein a field plate is in electrical contact with the first P-type region, and the field plate overlaps with but is isolated from portions of the first and second N type regions.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: August 26, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Edward Coyne
  • Publication number: 20140232435
    Abstract: A circuit includes multiple input sub-circuits coupled to a common output node. Each input sub-circuit includes a transconductance cell. A diode is coupled between the output of the transconductance cell and a common output node. A feedback circuit is coupled between the common output node and a second input of the transconductance cell. A voltage follower is coupled between the common output node and a reference voltage, with an input coupled to the output of the transconductance cell.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 21, 2014
    Applicant: Analog Devices, Inc.
    Inventors: Sandro HERRERA, Moshe GERSTENHABER
  • Publication number: 20140233773
    Abstract: In one aspect, reduced power consumption and/or circuit area of a discrete time analog signal processing module is achieved in an approach that makes use of entirely, or largely, passive charge sharing circuitry, which may include configurable (e.g., after fabrication, at runtime) multiplicative scaling stages that do not require active devices in the signal path. In some examples, multiplicative coefficients are represented digitally, and are transformed to configure the reconfigurable circuitry to achieve a linear relationship between a desired coefficient and a degree of charge transfer. In some examples, multiple successive charge sharing phases are used to achieve a desired multiplicative effect that provides a large dynamic range of coefficients without requiring a commensurate range of sizes of capacitive elements. The scaling circuits can be combined to form configurable time domain or frequency domain filters.
    Type: Application
    Filed: October 1, 2013
    Publication date: August 21, 2014
    Applicant: Analog Devices, Inc.
    Inventors: Eric Nestler, Vladimir Zlatkovic, Jeffrey Venuti
  • Patent number: 8810283
    Abstract: A circuit for sampling an analog input signal may include a transistor disposed on a substrate and a sampling capacitor coupled to one of the source and the drain of the transistor. The transistor may be disposed on a substrate that is coupled to ground. A source and a drain of the transistor may be disposed in a back gate of the transistor. The analog input may be supplied to one of the source and the drain of the transistor, and the back gate may receive a back gate voltage having a value that is lower than ground.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: August 19, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Joseph M. Hensley, Franklin M. Murden
  • Patent number: 8810282
    Abstract: Apparatus and methods for voltage comparison are provided. In one embodiment, a comparator includes a first input transistor having a gate configured to receive a first input voltage and a second input transistor having a gate configured to receive a second input voltage. The first and second input transistors can be used to compare the first input voltage to the second input voltage. Additionally, the comparator further includes a first Miller capacitor electrically connected to a drain of the first input transistor and a second Miller capacitor electrically connected to a drain of the second input transistor. Furthermore, first and second inverting amplification circuits are electrically connected across the first and second Miller capacitors, respectively, so as to increase the effective capacitance of the capacitors. The first and second Miller capacitors can be used to extend the comparator's integration time, thereby enhancing the performance of the comparator.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: August 19, 2014
    Assignee: Analog Devices Inc.
    Inventor: Hongxing Li
  • Publication number: 20140225228
    Abstract: An apparatus for transceiver signal isolation and voltage clamp from transient electrical events includes a bi-directional protection device comprising a bipolar PNPNP device assembly, a first parasitic PNPN device assembly, and a second parasitic PNPN device assembly. The bipolar PNPNP device assembly includes an NPN bi-directional bipolar transistor, a first PNP bipolar transistor, and a second PNP bipolar transistor, and is configured to receive a transient voltage signal through first and second pads. The first and second pads are electrically connected to the PNPNP device assembly through emitters of the first and second PNP bipolar transistors. The bipolar PNPNP device assembly is electrically connected to a first parasitic PNPN device assembly comprising a parasitic PNP bipolar transistor and a first parasitic NPN bipolar transistor.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Analog Devices, Inc.
    Inventors: Javier Alejandro Salcedo, Juan Luo
  • Patent number: 8803193
    Abstract: An overvoltage protection device in combination with a filter, the overvoltage protection device having a first node for connection to a node to be protected, a second node for connection to a discharge node; and a control node; and wherein the filter comprises at least one of: (a) a capacitor connected between the first node and the discharge node; (b) a capacitor connected between the control node and the discharge node; or (c) an inductor in series connection with the first node.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 12, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Edward Coyne
  • Patent number: 8804844
    Abstract: Images are obtained for image compression. The images are compared using sum of absolute difference devices, which have arithmetic parts, and accumulators. The sign bits of the accumulators are determined at a time of minimum distortion between two images. These sign bits are associated with sets of probabilistically-similar parts. When other sets from that set are obtained later, an early exit is established.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 12, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Bradley C. Aldrich, Jose Fridman
  • Patent number: 8803602
    Abstract: A bias voltage source for a differential circuit has low output impedance at DC, but considerably higher output impedance within the frequency band of the differential signal being processed, to provide an accurate, well-matched common-mode bias voltage to each component of a differential signal path, while providing a low noise current, minimizing the conversion between common-mode and differential modes, and preserving available headroom, and all without requiring the use of large resistors.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Daniel Rey-Losada
  • Patent number: 8803721
    Abstract: A multiplying analog-to-digital converter (“MDAC”) that reduces the power consumption of the MDAC by at least 2.3 times by improving the feedback factor. The amplifier may include a feed forward approach in which the input capacitor (also referred to as “sampling capacitor”) is buffered by a common gate amplifier to improve bandwidth by removing input and parasitic capacitance terms from the global feedback loss. THe amplifier may also use an alternate form of local compensation, for example, cascode compensation. The amplifier may also further include an alternate way to reduce parasitic capacitance with a buffer.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 12, 2014
    Assignee: Analog Devices, Inc.
    Inventors: William T. Boles, Michael R. Elliott
  • Patent number: 8806446
    Abstract: A system debugging program code stored in shared memory and executed by multiple processors or processing cores. Exemplary operation includes determining if an address associated with an executing instruction is outside a first address range associated with the first processor, determining if the address associated with the executing instruction is outside a second address range associated with the second processor; and then raising an emulation event based on the first comparison but not the second comparison. Exemplary embodiments are also capable of identifying instructions corresponding to breakpoints which are executed by only one of multiple processors that execute program code stored in the shared memory.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: August 12, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Stephen M. Kilbane