Patents Assigned to ANALOG PHOTONICS LLC
  • Patent number: 11150411
    Abstract: Aspects of the present disclosure describe large scale steerable optical switched arrays that may be fabricated on a common substrate including many thousands or more emitters that may be arranged in a curved pattern at the focal plane of a lens thereby allowing the directional control of emitted light and selective reception of reflected light suitable for use in imaging, ranging, and sensing applications including accident avoidance.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: October 19, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts
  • Publication number: 20210318442
    Abstract: Aspects of the present disclosure describe wavelength division multiplexed LiDAR systems, methods, and structures that advantageously provide a wide field of view without employing lasers having a large tuning range.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Applicant: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Diedrik Vermeulen
  • Publication number: 20210263389
    Abstract: Aspects of the present disclosure describe optical phased array structures and devices in which hyperbolic phase envelopes are employed to create focusing and diverging emissions in one and two dimensions. Tuning the phase fronts moves focal point spot in depth and across the array. Grating emitters are also used to emit light upward (out of plane). Adjusting the period of the gratings along the light propagation direction results in focusing the light emitted from the gratings. Changes in the operating wavelengths employed moves the focal spot along the emitters.
    Type: Application
    Filed: April 27, 2021
    Publication date: August 26, 2021
    Applicant: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts
  • Patent number: 11079653
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 11079654
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: August 3, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20210223544
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).
    Type: Application
    Filed: March 16, 2021
    Publication date: July 22, 2021
    Applicant: Analog Photonics LLC
    Inventors: Peter Nicholas Russo, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael J. Whitson
  • Patent number: 11061140
    Abstract: Aspects of the present disclosure describe wavelength division multiplexed LiDAR systems, methods, and structures that advantageously provide a wide field of view without employing lasers having a large tuning range.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 13, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Christopher Poulton, Diedrik Vermeulen
  • Patent number: 11003045
    Abstract: Aspects of the present disclosure describe optical phased array structures and devices in which hyperbolic phase envelopes are employed to create focusing and diverging emissions in one and two dimensions. Tuning the phase fronts moves focal point spot in depth and across the array. Grating emitters are also used to emit light upward (out of plane). Adjusting the period of the gratings along the light propagation direction results in focusing the light emitted from the gratings. Changes in the operating wavelengths employed moves the focal spot along the emitters.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: May 11, 2021
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts
  • Patent number: 10976542
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for aberration correction of optical phased arrays that employ a corrective optical path difference (OPD) in the near-field of an OPA to correct or cancel out aberrations in emitted beams of the OPA including those reaching far-field distances by generating a spatially-varying OPD across the aperture of the OPA that is substantially equal and opposite to an equivalent OPD of the aberration(s).
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 13, 2021
    Assignee: Analog Photonics LLC
    Inventors: Peter Nicholas Russo, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan, Diedrik Vermeulen, Michael Robert Watts, Michael Whitson
  • Patent number: 10976491
    Abstract: In one embodiment an optoelectronic system can include a photonics interposer having a substrate and a functional interposer structure formed on the substrate, a plurality of through vias carrying electrical signals extending through the substrate and the functional interposer structure, and a plurality of wires carrying signals to different areas of the functional interposer structure. The system can further include one or more photonics device integrally formed in the functional interposer structure, and one or more prefabricated component attached to the functional interposer structure.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: April 13, 2021
    Assignees: THE RESEARCH FOUNDATION FOR THE STATE UNIVERSITY OF NEW YORK, THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, ANALOG PHOTONICS, LLC, ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Douglas Coolbaugh, Michael Watts, Michal Lipson, Keren Bergman, Thomas Koch, Jeremiah Hebding, Daniel Pascual, Douglas La Tulipe
  • Publication number: 20210026216
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Application
    Filed: September 28, 2020
    Publication date: January 28, 2021
    Applicant: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Patent number: 10884312
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: January 5, 2021
    Assignee: Analog Photonics LLC
    Inventors: Michael Watts, Ehsan Hosseini, Christopher Poulton, Erman Timurdogan
  • Publication number: 20200393737
    Abstract: An optical switching apparatus comprises: input ports receiving respective input optical waves, each coupled to a respective beam-forming structure comprising: an input optical waveguide, an optical power distributor to distribute optical power from a mode of the optical waveguide over the respective spatial region, and a spatially distributed phase shifter to apply different transmission optical phase shifts over different portions of the respective spatial region, where the transmission optical phase shifts determine the selected transmission angle; and output ports providing respective output optical waves, each coupled to a respective beam-receiving structure comprising: a spatially distributed phase shifter to apply different reception optical phase shifts over different portions of the respective spatial region, where the reception optical phase shifts determine the selected reception angle, an optical power combiner to combine optical power from different portions of the respective spatial region into
    Type: Application
    Filed: June 11, 2020
    Publication date: December 17, 2020
    Applicants: Analog Photonics LLC, Analog Photonics LLC
    Inventors: Ehsan Shah Hosseini, Michael Robert Watts, Matthew Byrd
  • Patent number: 10809591
    Abstract: An optical phase shifter may include a waveguide core that has a top surface, and a semiconductor contact that is laterally displaced relative to the waveguide core and is electrically connected to the waveguide core. A top surface of the semiconductor contact is above the top surface of the waveguide core. The waveguide core may include a p-type core region and an n-type core region. A p-type semiconductor region may be in physical contact with the n-type core region of the waveguide core, and an n-type semiconductor region may be in physical contact with the p-type core region of the waveguide core. A phase shifter region and a light-emitting region may be disposed at different depth levels, and the light-emitting region may emit light from a phase shifter region that is in a position adjacent to the light-emitting region.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: October 20, 2020
    Assignee: Analog Photonics LLC
    Inventors: Michael R. Watts, Ehsan Shah Hosseini, Christopher Vincent Poulton, Erman Timurdogan
  • Patent number: 10790585
    Abstract: Aspects of the present disclosure describe systems, methods, and structures for optical phased array calibration that advantageously may be performed as a single-pass measurement of phase offset with respect to only a single interference measurement. In sharp contrast to the prior art—systems, methods, and structures according to aspects of the present disclosure advantageously produce phase offsets and phase functions of each element without time-consuming iterative procedures or multiple detector signals as required by the prior art.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: September 29, 2020
    Assignee: Analog Photonics LLC
    Inventors: Christopher Poulton, Peter Russo, Erman Timurdogan, Matthew Byrd, Diedrik Vermeulen, Ehsan Hosseini
  • Patent number: 10775559
    Abstract: A plurality of waveguide structures are formed in at least one silicon layer of a first member. The first member includes: a first surface of a first silicon dioxide layer that is attached to a second member that consists essentially of an optically transmissive material having a thermal conductivity less than about 50 W/(m·K), and a second surface of material that was deposited over at least some of the plurality of waveguide structures. An array of phase shifters is formed in one or more layers of the first member. An array of temperature controlling elements are in proximity to the array of phase shifters.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 15, 2020
    Assignee: Analog Photonics LLC
    Inventors: Michael Robert Watts, Benjamin Roy Moss, Ehsan Shah Hosseini, Christopher Poulton, Peter Nicholas Russo
  • Patent number: 10761272
    Abstract: Aspects of the present disclosure describe large scale steerable optical switched arrays that may be fabricated on a common substrate including many thousands or more emitters that may be arranged in a curved pattern at the focal plane of a lens thereby allowing the directional control of emitted light and selective reception of reflected light suitable for use in imaging, ranging, and sensing applications including accident avoidance.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: September 1, 2020
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts
  • Patent number: 10705407
    Abstract: Aspects of the present disclosure describe systems, methods, and structures providing speckle reduction in photonic phased array structures.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Analog Photonics LLC
    Inventors: Ehsan Hosseini, Michael Watts, Peter Russo
  • Patent number: 10707837
    Abstract: Aspects of the present disclosure describe systems, methods, and structures including integrated laser systems that employ external chirping structures that may advantageously include phase shifters and/or one or more filters. Further aspects of the present disclosure describe systems, methods, and structures including laser systems that employ external chirping structures that may advantageously include optical phased arrays.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: July 7, 2020
    Assignee: Analog Photonics LLC
    Inventors: Christopher Poulton, Matthew Byrd, Ehsan Hosseini, Erman Timurdogan, Michael Watts
  • Patent number: 10690993
    Abstract: Aspects of the present disclosure describe optical structures and devices, and more particularly to improved, tunable optical structures including optical gratings that are dynamically affected and/or tuned by acousto-optic or electro-optic mechanisms.
    Type: Grant
    Filed: September 15, 2018
    Date of Patent: June 23, 2020
    Assignee: Analog Photonics LLC
    Inventors: Erman Timurdogan, Ehsan Hosseini, Michael Watts, Michael Whitson