Patents Assigned to Analogic Corporation
  • Patent number: 11107598
    Abstract: Among other things, an anti-scatter collimator (200) includes a first anti-scatter structure (302) defining a retaining member (432). The retaining member includes a first protruding member having a top surface defining a first plane, and a second protruding member having a second top surface defining a second plane. The second protruding member is spaced apart from the first protruding member to define a groove (434). The retaining member includes a support member extending between the first protruding member and the second protruding member. The support member defines a bottom surface of the groove. The bottom surface of the support member is spaced a distance apart from the first plane and the second plane. A second anti-scatter structure (303) includes a septum disposed within the groove. The first protruding member, the second protruding member, and the support member maintain a position of the septum relative to the first anti-scatter structure.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: August 31, 2021
    Assignee: Analogic Corporation
    Inventor: Martin Choquette
  • Patent number: 11083422
    Abstract: Among other things, one or more systems and/or techniques are described for shaping a profile of radiation attenuation in a fan-angle direction via a pre-object filter (e.g., a bowtie filter) based upon a profile of an object. For example, a pre-object filter may be at least partially rotated about a filter axis and/or may be translated in a direction parallel to a direction of conveyance of the object under examination to adjust a profile of radiation attenuation in the fan-angle direction. Further, in one embodiment, the profile of radiation attenuation may be reshaped during rotation of the radiation source about the object to adjust an amount of radiation attenuation in the fan-angle direction (e.g., to adjust a profile of radiation attenuation as a shape of the object changes from a perspective of a radiation source as the radiation source is rotated about the object).
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: August 10, 2021
    Assignee: Analogic Corporation
    Inventors: Matthew B. Christensen, Aleksander Roshi, Anton Deykoon
  • Patent number: 11087468
    Abstract: Among other things, one or more systems and/or techniques for classifying an item disposed within an object are provided herein. A three-dimensional image of the object (e.g., a bag) is segmented into a set of item representations (e.g., laptop, thermos, etc.). An item is identified from the set of item representations based upon item features of the item, such as the laptop that could be used to conceal an item of interest such as an explosive. A region comprising a three-dimensional image of the item is divided into a set of sub-regions (e.g., a first sub-region encompassing a screen, a second sub-region encompassing a motherboard, etc.). The item is classified as a potential first type of item (e.g., an explosive laptop) when any sub-region has a number of voxels, with computed tomography (CT) values within a range of known CT values for a first type of item, exceeding a threshold.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: August 10, 2021
    Assignee: Analogic Corporation
    Inventors: Sergey Simanovsky, David Schafer
  • Patent number: 11064979
    Abstract: A method includes generating a real-time ultrasound image of anatomy of interest. At least a sub-portion of the anatomy of interest is deformed from an initial location to a different location by pressure applied by an external force. The method further includes obtaining a 2-D slice, which corresponds to a same plane as the real-time ultrasound image, from 3-D reference image data, wherein a corresponding sub-portion is at the initial location. The method further includes determining displacement fields for the sub-portion from the sub-portion, the corresponding sub-portion and other anatomy not-deformed in the real-time ultrasound image and the 3-D reference image data. The method further includes deforming the 3-D reference image data using the displacement fields, which creates deformed 3-D reference image data based on the different location.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 20, 2021
    Assignee: Analogic Corporation
    Inventors: David Lieblich, Zhaolin Li
  • Patent number: 11039808
    Abstract: Scanning systems for performing computed tomography scanning may include a stator, a rotor supporting at least one radiation source and at least one radiation detector rotatable with the rotor, and a rotator operatively connected to the rotor to rotate the rotor relative to the stator. A conveyor system may include a respective conveyor extending through the rotor of the scanning system. A control system operatively connected to the scanning system and the conveyor system may be configured to automatically and dynamically increase a rate at which the rotor moves, decrease a rate at which the respective conveyor moves, and/or adjust other system parameters when the control system enters a finer pitch mode and to automatically and dynamically decrease a rate at which the rotor moves, increase a rate at which the respective conveyor moves, and/or adjust other system parameters when the control system enters a coarser pitch mode.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 22, 2021
    Assignee: Analogic Corporation
    Inventor: Steven N. Urchuk
  • Patent number: 11039798
    Abstract: Among other things, a computed tomography (CT) imaging modality is provided. The imaging modality includes a radiation source that emits radiation. The imaging modality includes a detector array that detects at least a portion of the radiation. The imaging modality includes a rotating structure that rotates about an axis. The rotating structure includes a first support portion having a first shape. The rotating structure includes a second support portion having a second shape different than the first shape. The radiation source and the detector array are mounted to the second support portion.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 22, 2021
    Assignee: Analogic Corporation
    Inventors: Robert Williams, Andrew Alvino, Ronald E Swain, Tadas Vaisvila
  • Patent number: 11029441
    Abstract: Scanning systems may include a stator, a rotor supporting at least one radiation source and at least one radiation detector rotatable with the rotor, and a motivator operatively connected to the rotor. The stator, the rotor, the at least one radiation source, and the at least one radiation detector may be located within a housing. A conveyor system may extend through the housing and the rotor. A shielding system including a series of independently movable energy shields sized, shaped, and positioned to at least partially occlude a pathway along which the conveyor system extends may extend from an entrance to the housing, through the rotor, to an exit from the housing. A control system may be configured to cause the shielding system to automatically and dynamically move individual energy shields in response to advancement of one or more objects supported on the conveyor system.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: June 8, 2021
    Assignee: Analogic Corporation
    Inventors: Steven Weed, Patrick Splinter
  • Patent number: 10918345
    Abstract: An assembly for a system includes a rotatable drum defining a bore and configured for rotation about an object positioned within the bore, a support structure configured to support the rotatable drum during a rotation of the drum, a first radial air bearing disposed between the rotatable drum and the support structure and positioned proximate to a first distal end of the rotatable drum, and a second radial air bearing disposed between the rotatable drum and the support structure and positioned proximate to a second, opposite distal end of the rotatable drum. The first radial air bearing and the second radial air bearing are located at different longitudinal positions along a longitudinal axis of the rotatable drum and the first radial air bearing and the second radial air bearing are configured to levitate the rotatable drum relative to the support structure.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: February 16, 2021
    Assignee: Analogic Corporation
    Inventor: Jeffrey Knox
  • Patent number: 10921467
    Abstract: A detector array is provided for detecting radiation photons. The detector array includes a phosphor screen that converts radiation photons into light energy. The detector array includes a photodiode array having a plurality of photodiodes that convert the light energy into electrical charge. A first photodiode of the plurality of photodiodes is spaced apart from a second photodiode of the plurality of photodiodes to define a non-detection region. The phosphor screen overlies the first photodiode, the second photodiode, and the non-detection region between the first photodiode and the second photodiode.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: February 16, 2021
    Assignee: Analogic Corporation
    Inventors: Ruvin Deych, Vladan Ristanovic, David Schafer
  • Patent number: 10849581
    Abstract: Among other things, a guide unit and a radiation system including a guide unit are provided. The guide unit limits axial movement of a rotatable structure supporting a radiation source and a detector array of the radiation system. Embodiments of the guide unit include a frame member configured to be supported by a stationary unit that forms a portion of the radiation system. A guide wheel coupled to the frame member is configured to roll along a periphery of the rotatable structure of the radiation system as the rotatable structure supporting the radiation source and the detector array is rotated about an axis of rotation during operation of the radiation system. A wheel adjustment system coupled to the frame member linearly translates the guide wheel toward the periphery of the rotatable structure supported by the stationary unit of the radiation system.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 1, 2020
    Assignee: Analogic Corporation
    Inventors: Steven D. Weed, Andrew Alvino
  • Publication number: 20200371267
    Abstract: Scanning systems may include a stator, a rotor supporting at least one radiation source and at least one radiation detector rotatable with the rotor, and a motivator operatively connected to the rotor. The stator, the rotor, the at least one radiation source, and the at least one radiation detector may be located within a housing. A conveyor system may extend through the housing and the rotor. A shielding system including a series of independently movable energy shields sized, shaped, and positioned to at least partially occlude a pathway along which the conveyor system extends may extend from an entrance to the housing, through the rotor, to an exit from the housing. A control system may be configured to cause the shielding system to automatically and dynamically move individual energy shields in response to advancement of one or more objects supported on the conveyor system.
    Type: Application
    Filed: May 24, 2019
    Publication date: November 26, 2020
    Applicants: Analogic Corporation, Analogic Corporation
    Inventors: Steven Weed, Patrick Splinter
  • Patent number: 10802166
    Abstract: A detector array for a radiation system includes a radiation detection sub-assembly, a routing sub-assembly, and an electronics sub-assembly. The routing sub-assembly is disposed between the radiation detection sub-assembly and the electronics sub-assembly and includes one or more layers of shielding material. For example, the routing sub-assembly may include a printed circuit board having embedded therein a shielding material configured to shield the electronics sub-assembly from at least some radiation. In some embodiments, the shielding material defines at least one opening through which a conductive element(s) passes to deliver signals between the radiation detection sub-assembly and the electronics sub-assembly.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 13, 2020
    Assignee: Analogic Corporation
    Inventors: Randy Luhta, Lane Marsden, Ruvin Deych, Jeffrey Greenwald, Martin Choquette, Christopher David Tibbetts
  • Patent number: 10782441
    Abstract: An X-ray inspection system includes at least one display monitor and a console. The console includes at least two different visualization algorithms and a processor. The processor is configured to process volumetric image data with a first of the at least two different visualization algorithms and produce a first processed volumetric image. The processor is further configured to process the volumetric image data with a second of the at least two different visualization algorithms and produce a second processed volumetric image. The processor is further configured to concurrently display the first and second processed volumetric image data via the display monitor. The volumetric image data is indicative of a scanned object and items therein.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: September 22, 2020
    Assignee: Analogic Corporation
    Inventors: Kevin Brennan, William Davidson, Patrick Splinter
  • Patent number: 10761219
    Abstract: A dual-energy detector array for a radiation system is provided. The dual-energy detector array includes a circuit board assembly having a first side and a second side. A first conversion package is coupled to the first side of the circuit board assembly and has a first effective photon energy. A second conversion package is coupled to the second side of the circuit board assembly and has a second effective photon energy different than the first effective photon energy. A radiation filtering material is disposed within the circuit board assembly between the first conversion package and the second conversion package. The radiation filtering material attenuates at least some of the radiation photons impinging thereon.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 1, 2020
    Assignee: Analogic Corporation
    Inventors: Ruvin Deych, Martin Choquette, Christopher David Tibbetts
  • Patent number: 10697903
    Abstract: Among other things, one or more techniques and/or systems for generating a three-dimensional combined image is provided. A three-dimensional test image of a test item is combined with a three-dimensional article image of an article that is undergoing a radiation examination to generate the three-dimensional combined image. A first selection region of the three-dimensional article image is selected. The three-dimensional test image of the test item is inserted within the first selection region. Although the test item is not actually comprised within the article under examination, the three-dimensional combined image is intended to cause the test item to appear to be comprised within the article.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: June 30, 2020
    Assignee: Analogic Corporation
    Inventors: Zhaolin Li, David Lieblich
  • Patent number: 10663989
    Abstract: A micro channel device processing apparatus includes a heating/cooling chamber configured to receive at least a sub-portion of a micro channel device and a fluid control system that controls a flow of a heating/cooling fluid in the chamber. A method includes controlling a temperature of a sample carried by a micro channel device installed in a micro channel device processing apparatus via a heating/cooling chamber of the processing apparatus. A micro channel device processing apparatus includes a heating/cooling chamber configured to receive a micro channel device carrying a sample and means for controlling a temperature of the sample in the chamber.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: May 26, 2020
    Assignee: Analogic Corporation
    Inventor: Louis Poulo
  • Patent number: 10644717
    Abstract: A phase accumulation digital-to-analog converter (DAC) is provided. A digital-to-time converter (DTC), including a reference clock chain with N number of series connected delay elements, accepts a clock signal with a leading clock edge and supplies a set signal representing a first delay of the leading clock edge. A data clock chain including N number of series connected accumulators, accepts the clock signal with the leading clock edge, accepts a binary coded digital word, and supplies a reset signal representing a second delay of the leading clock edge, responsive to the digital word. A phase-to-time logic (PTL) receives the set and reset signals and supplies a DTC output signal representing the difference in delay between the set and reset signals. A time-to-voltage converter (TVC) charges a load capacitor every clock period in response to the DTC output signal to supply an analog output signal.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: May 5, 2020
    Assignee: IQ-Analog Corporation
    Inventor: Sunit Paul Sebastian
  • Patent number: 10636128
    Abstract: Provided are one or more systems and/or techniques for filtering noise from a space-variant image. For each of the plurality of pixels included in the space-variant image, a variance of the pixel is detected, and a variance reduction power is generated based on a relationship between the detected variance of the pixel and a target variance specified by a user. At least a first defined kernel is selected from a database populated with a plurality of defined kernels that are available to be selected for filtering the image data for the pixel. The image data for the pixel is recursively filtered during a plurality of filter iterations to cause the variance of the pixel to approach the target variance. The first defined kernel is applied to the image data for the pixel during at least one of the filter iterations.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: April 28, 2020
    Assignee: Analogic Corporation
    Inventor: Alexander Zamyatin
  • Patent number: 10607771
    Abstract: Axisymmetric solid of revolution derivable from section at FIG. 5 is generally toroidal with electric current(s) in windings preferably flowing circumferentially along major circle(s) during power coupling device operation. Current(s) in windings, current(s) in half-shields, and the volume of space swept out by shield airgap(s) emerge from plane of paper perpendicularly at FIG. 5, but as these emerge therefrom, they curve to follow toroidal major circle(s). Core regions preferably shunt and align magnetic flux such that magnetic field lines escape therefrom primarily only in region(s) of core airgap(s) and such that magnetic flux loops lie in planes of toroidal minor circle(s). Half-shield(s) preferably have electrically conductive material(s) distributed therein as is sufficient to substantially cancel magnetic flux lines impinging thereon before effects of such impinging magnetic flux lines would reach shield airgap(s) and/or outer surface(s) of half-shields.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: March 31, 2020
    Assignee: Analogic Corporation
    Inventor: John Dobbs
  • Patent number: 10598802
    Abstract: Among other things, a detector unit for a radiation detector array is provided. The detector unit includes a radiation detection sub-assembly including a scintillator and a photodetector array. A first routing layer is coupled to the photodetector array of the radiation detection sub-assembly at a first surface of the routing layer. An electronics assembly includes an analog-to-digital converter that converts an analog signal to a digital signal. A second routing layer is disposed between the A/D converter and the first routing layer. A shielding element is disposed between the A/D converter and the second routing layer. The shielding element shields the A/D converter from the radiation photons. The second routing layer couples the electronics sub-assembly to the first routing layer. A first coupling element couples the A/D converter to the second routing layer.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: March 24, 2020
    Assignee: Analogic Corporation
    Inventors: Randy Luhta, Chris Vrettos