Patents Assigned to and Human Services
  • Patent number: 11878998
    Abstract: Embodiments of a recombinant Respiratory Syncytial Virus (RSV) F ectodomain trimer stabilized in a prefusion conformation are provided. Also disclosed are nucleic acids encoding the RSV F ectodomain trimer and methods of producing the RSV F ectodomain trimer. Methods for inducing an immune response in a subject are also disclosed. In some embodiments, the method can be a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the recombinant RSV F ectodomain trimer to the subject.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: January 23, 2024
    Assignee: The United States of America, as represented by the Secretary Department of Health and Human Services
    Inventors: Peter Kwong, Barney Graham, John Mascola, Li Ou, Aliaksandr Druz, Man Chen, Wing-Pui Kong, Ivelin Stefanov Georgiev, Emily Rundlet, Michael Gordon Joyce, Yaroslav Tsybovsky, Paul Thomas, Marie Pancera, Mallika Sastry, Cinque Soto, Joseph Van Galen, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Ulrich Baxa
  • Patent number: 11879017
    Abstract: The invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain of human antibody 139, an extracellular hinge domain, a transmembrane domain, and an intracellular domain T cell receptor signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a host and methods of treating or preventing cancer in a host are also disclosed.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: January 23, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Richard A Morgan, Steven A. Rosenberg
  • Publication number: 20240018193
    Abstract: Disclosed are Respiratory Syncytial Virus (RSV) antigens including a recombinant RSV F protein stabilized in a prefusion conformation. Also disclosed are nucleic acids encoding the antigens and methods of producing the antigens. Methods for generating an immune response in a subject are also disclosed. In some embodiments, the method is a method for treating or preventing a RSV infection in a subject by administering a therapeutically effective amount of the antigen to the subject.
    Type: Application
    Filed: September 11, 2023
    Publication date: January 18, 2024
    Applicant: The United State of America, as represented by the Secretary, Dept. of Health and Human Services
    Inventors: Peter D. Kwong, Barney S. Graham, Jason S. McLellan, Jeffrey Boyington, Lei Chen, Man Chen, Gwo-Yu Chuang, Ivelin Stefanov Georgiev, Jason Gorman, Michael Gordon Joyce, Masaru Kanekiyo, Gilad Ofek, Marie Pancera, Mallika Sastry, Cinque Soto, Sanjay Srivatsan, Guillaume Stewart-Jones, Yongping Yang, Baoshan Zhang, Tongqing Zhou
  • Patent number: 11872261
    Abstract: Described herein is the design and construction of a class of lipoprotein targeting protease inhibitors. Small peptides with protease inhibitor activity are conjugated to hydrophobic, lipoprotein targeting molecules using, for instance, amine reactive chemistry. Methods of use of the resultant lipoprotein targeting protease inhibitor (antiprotease) molecules are also described. Also described is the production and use of protease inhibitor enriched HDL particles, as well as A1AT-peptide-enriched HDL particles, and their use in various therapeutic contexts.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: January 16, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Alan T. Remaley, Scott M. Gordon
  • Patent number: 11872394
    Abstract: Described herein are systems and methods for the treatment of pain using electrical nerve conduction block (ENCB). Contrary to other methods of pain treatment, the ENCB can establish a direct block of neural activity, thereby eliminating the pain. Additionally, the ENCB can be administered without causing electrochemical damage. An example method can include: placing at least one electrode contact in electrical communication with a region of a subject's spinal cord; applying an electrical nerve conduction block (ENCB) to a nerve in the region through the at least one electrode contact; and blocking neural activity with the ENCB to reduce the pain or other unwanted sensation in the subject.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: January 16, 2024
    Assignees: CASE WESTERN RESERVE UNIVERAITY, NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT
    Inventors: Niloy Bhadra, Narendra Bhadra, Kevin L Kilgore, Scott Lempka, Jesse Wainright, Tina Vrabec, Manfred Franke
  • Publication number: 20240009236
    Abstract: Modified NK cells with reduced expression of CCR5 are provided. Methods of treating a subject with cancer with the modified NK cells are also provided. In some examples, the modified NK cells also have reduced expression of one or more of CCR1, CXCR6, and CD38, increased expression of one or more of CXCR4, CCR7, and CXCR3, and/or express a chimeric antigen receptor.
    Type: Application
    Filed: November 3, 2021
    Publication date: January 11, 2024
    Applicant: The United States of America, as represented by the Secretary, Dept. of Health and Human Services
    Inventors: Richard W. Childs, Emily R. Levy, Joseph Clara
  • Publication number: 20240009290
    Abstract: The disclosure provides immunogen polypeptides comprising fragments of VAR2CSA protein expressed by P. falciparum. Aspects of the disclosed immunogen polypeptides comprise all or portions of the CSA binding regions of VAR2CSA as identified by a structural study of VAR2CSA conducted by the inventors. Also provided are compositions comprising such immunogen polypeptides, and methods of using the immunogen polypeptides for vaccination and treatment of disease.
    Type: Application
    Filed: November 18, 2021
    Publication date: January 11, 2024
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Niraj H. Tolia, Rui Ma, Patrick E. Duffy, Jonathan P. Renn
  • Patent number: 11865172
    Abstract: The subject invention pertains to isolated influenza virus that is capable of infecting canids and causing respiratory disease in the canid. The subject invention also pertains to compositions and methods for inducing an immune response against an influenza virus of the present invention. The subject invention also pertains to compositions and methods for identifying a virus of the invention and diagnosing infection of an animal with a virus of the invention.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: January 9, 2024
    Assignees: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC., CORNELL RESEARCH FOUNDATION, INC., THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, CENTERS FOR DISEASE CONTROL AND PREVENTION
    Inventors: Patti Cynthia Crawford, Paul J. Gibbs, Edward J. Dubovi, Ruben Omar Donis, Jacqueline Katz, Alexander I. Klimov, Nallakannu P. Lakshmanan, Melissa Anne Lum, Daniel Ghislena Emiel Goovaerts, Mark William Mellencamp, Nancy J. Cox, William L. Castleman
  • Patent number: 11865168
    Abstract: Provided herein are compositions and methods for therapeutic and/or prophylactic treatment of an intracellular bacterial infection in a subject in need thereof, comprising one or more modulating agents, wherein the one or more modulating agents increase expression of IFN?, IL-2, TNF, and/or IL-17 in systemic and/or lung T cells. In some embodiments, the increase of expression of IFN?, IL-2, TNF, and/or IL-17 occurs in lung T cells. The lung T cells can be lung resident T cells or systemic T cells that are recruited to the lung. In some embodiments, the T cells are CD4+ and/or CD8+ T cells. In some embodiments, the intracellular bacterial infection is a Mycobacterium tuberculosis (MTB) infection.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: January 9, 2024
    Assignees: Massachusetts Institute of Technology, The United States of America, as represented by The Secretary, Department of Health & Human Services, University of Pittsburgh—Of The Commonwealth System of Higher Education
    Inventors: Alexander K. Shalek, Travis Hughes, Marc H. Wadsworth, Robert Seder, Mario Roederer, Joanne L. Flynn, Patricia Darrah
  • Publication number: 20240003870
    Abstract: A method of selecting T cells with improved anti-cancer activity, the method including: a) quantifying glucose transporter 1 (GLUT1) expression level at the cell surface of a population of T cells by using a GLUT1 ligand, b) selecting T cells having a low GLUT1 expression level, wherein the T cells having a low GLUT1 expression level have improved anti-cancer activity. Also, a population of T cells with improved anti-cancer activity for use in the treatment of cancer, to the use of a GLUT1 ligand for selecting T cells with improved anti-cancer activity, and to the use of GLUT1 as a biomarker of the anti-cancer therapeutic efficacy of T cells.
    Type: Application
    Filed: November 5, 2021
    Publication date: January 4, 2024
    Applicants: METAFORA BIOSYSTEMS, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITÉ DE MONTPELLIER, THE UNITED STATES OF AMERICA ,ASREPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICE
    Inventors: Naomi TAYLOR, Marie Charlotte Chantal POUZOLLES, Valérie DARDALHON, Vincent PETIT
  • Publication number: 20240002445
    Abstract: Disclosed is a class of knotted cyclic peptides. Related pharmaceutical compositions and methods of using the peptides and methods of synthesizing the peptides are also disclosed.
    Type: Application
    Filed: November 17, 2021
    Publication date: January 4, 2024
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Barry R. O'Keefe, Lauren R. Haugh Krumpe, Yves Pommier, Christophe R. Marchand, Ingrid C. Schroeder, K. Johan Rosengren, Brice A.P. Wilson
  • Patent number: 11860258
    Abstract: Methods, computing devices, and MRI systems that reduce artifacts produced by Maxwell gradient terms in TSE imaging using non-rectilinear trajectories are disclosed. With this technology, a RF excitation pulse is generated to produce transverse magnetization that generates a NMR signal and a series of RF refocusing pulses to produce a corresponding series of NMR spin-echo signals. An original encoding gradient waveform comprising a non-rectilinear trajectory is modified by adjusting a portion of the original encoding gradient waveform or introducing a zero zeroth-moment waveform segment at end(s) of the original encoding gradient waveform. During an interval adjacent to each of the series of RF refocusing pulses a first gradient pulse is generated. At least one of the first gradient pulses is generated according to the modified gradient waveform. An image is constructed from generated digitized samples of the NMR spin-echo signals obtained.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: January 2, 2024
    Assignees: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, SIEMENS HEALTHCARE GMBH, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: John P. Mugler, III, Craig H. Meyer, Adrienne Campbell, Rajiv Ramasawmy, Josef Pfeuffer, Zhixing Wang, Xue Feng
  • Publication number: 20230414381
    Abstract: Disclosed are powered gait assistance systems that include a controller, sensors, and a torque applicator (motor, spring, etc.) coupled to a patient's hips, thighs, knee, lower leg, ankle, and/or foot and operable to apply assistive torque to the patient's leg joint(s) to assist the patient's volitional joint actuating muscle output during selected stages of the patient's gait cycle, such that the applied torque improves the patient's leg posture, muscle output, range of motion, and/or other parameters over the gait cycle. The sensors can include a torque sensor that measures torque applied, one or more joint angle sensors, a ground contact sensor that measures ground contact of the patient's foot, and/or other sensors. The controller can determine what stage of the patient's gait cycle the patient's leg is in based on sensor signals and cause the torque applicator to apply corresponding torque to the joint(s) based on the gait cycle stage, sensor inputs, and known patient characteristics.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Thomas Bulea, Zachary Lerner, Diane Damiano, Andrew Gravunder
  • Patent number: 11852704
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: December 26, 2023
    Assignees: Siemens Healthcare GmbH, Centre National de la Recherche Scientifique (CNRS), Institut National de La Sante et de la Recherche Medicale (INSERM), King's College London, Department of Health and Human Services, UNIV PARIS XIII PARIS-NORD VILLETANEUSE, Universite de Paris
    Inventors: Giacomo Annio, Verena Muller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11851498
    Abstract: Polypeptides and proteins that specifically bind to and immunologically recognize CD276 are disclosed. Chimeric antigen receptors (CARs), anti-CD276 binding moieties, nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, and conjugates relating to the polypeptides and proteins are also disclosed. Methods of detecting the presence of (a) cancer or (b) tumor vasculature in a mammal and methods of (a) treating or preventing cancer or (b) reducing tumor vasculature in a mammal are also disclosed.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: December 26, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, BioMed Valley Discoveries, Inc.
    Inventors: Dimiter S. Dimitrov, Zhongyu Zhu, Bradley St. Croix, Steven Seaman, Saurabh Saha, Xiaoyan Michelle Zhang, Gary A. DeCrescenzo, Dean Welsch
  • Patent number: 11850236
    Abstract: The present invention concerns the use of compounds and compositions for the treatment or prevention of Flavivirus infections, such as dengue virus infections and Zika virus infections. Aspects of the invention include methods for treating or preventing Flavivirus virus infection, such as dengue virus and Zika virus infection, by administering a compound or composition of the invention, to a subject in need thereof; methods for inhibiting Flavivirus infections, such as dengue virus and Zika virus infections, in a cell in vitro or in vivo; pharmaceutical compositions; packaged dosage formulations; and kits useful for treating or preventing Flavivirus infections, such as dengue virus and Zika virus infections.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: December 26, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Florida State University Research Foundation, Inc., The Trustees of the University of Pennsylvania
    Inventors: Hengli Tang, Emily M. Lee, Wei Zheng, Ruili Huang, Miao Xu, Wenwei Huang, Khalida Shamim, Guoli Ming, Hongjun Song
  • Publication number: 20230406953
    Abstract: Nucleic acid constructs encoding a chimeric antigen receptor (CAR) and a truncated human epidermal growth factor receptor (huEGFRt) are described. The encoded CARs include a tumor antigen-specific monoclonal antibody, such as a glypican-3 (GPC3)-specific, a GPC2-specific or a mesothelin-specific monoclonal antibody, fused to a CD8? hinge region, a CD8? transmembrane region, a 4-1BB co-stimulatory domain and a CD3? signaling domain. Isolated host cells, such as isolated T cells that co-express the disclosed CARs and huEGFRt are also described. T cells transduced with the disclosed CAR constructs can be used for cancer immunotherapy.
    Type: Application
    Filed: July 26, 2023
    Publication date: December 21, 2023
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Dan Li
  • Publication number: 20230406859
    Abstract: Compounds having general formula I or a pharmaceutically acceptable salt, N-oxide, or hydrate thereof are provided herein. Also provided are methods of making the compounds and methods of their use, including in treatment of cancer, autoimmune disorders, and viral infections.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 21, 2023
    Applicant: The United States of America, as represented by the Secretary, Dept. of Health and Human Services
    Inventors: James Inglese, Ganesha Rai Bantukallu, Sandeep Rana, Laurence Lamy
  • Publication number: 20230405027
    Abstract: A process is provided for protecting a primate host from a self-replicating infection by an immunodeficiency retrovirus. Protection is achieved by administering to the primate host a combination of a pharmaceutically effective amount of a nucleoside reverse transcriptase inhibitor and a pharmaceutically effective amount of a nucleotide reverse transcriptase inhibitor prior to exposure to the immunodeficiency retrovirus. The administration is effective if provided in a single dose within 24 hours of the exposure. A regime of regular daily doses is also effective in providing protection against an immunodeficiency retrovirus becoming self-replicating after infecting a primate host.
    Type: Application
    Filed: May 19, 2023
    Publication date: December 21, 2023
    Applicant: THE U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Walid Heneine, Thomas M. Folks, Robert Janssen, Ronald A. Otten, Jose Gerardo Garcia Lerma
  • Patent number: 11846690
    Abstract: Multi-dimensional spectra associated with a specimen are reconstructed using lower dimensional spectra as constraints. For example, a two-dimensional spectrum associated with diffusivity and spin-lattice relaxation time is obtained using one-dimensional spectra associated with diffusivity and spin-lattice relaxation time, respectively, as constraints. Data for a full two dimensional spectrum are not acquired, leading to significantly reduced data acquisition times.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: December 19, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Peter J. Basser, Dan H. Benjamini