Patents Assigned to and Human Services
  • Patent number: 11771657
    Abstract: The present disclosure provides a method for delivering a neuroprotective polypeptide to at least a portion of a central nervous system (CNS) of a subject.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: October 3, 2023
    Assignees: The USA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Dong Seok Kim, Hee Kyung Kim, Nigel H. Greig
  • Patent number: 11773396
    Abstract: The invention provides an isolated and purified nucleic acid sequence encoding a chimeric antigen receptor (CAR) directed against B-cell Maturation Antigen (BCMA). The invention also provides host cells, such as T-cells or natural killer (NK) cells, expressing the CAR and methods for destroying multiple myeloma cells.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: October 3, 2023
    Assignee: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventor: James N. Kochenderfer
  • Patent number: 11773412
    Abstract: The invention provides for systems, methods, and compositions for targeting nucleic acids. In particular, the invention provides non-naturally occurring or engineered RNA-targeting systems comprising a novel RNA-targeting CRISPR effector protein and at least one targeting nucleic acid component like a guide RNA.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: October 3, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Rutgers, the State University of New Jersey, Skolkovo Institute of Science and Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Konstantin Severinov, Feng Zhang, Yuri I. Wolf, Sergey Shmakov, Ekaterina Semenova, Leonid Minakhin, Kira S. Makarova, Eugene Koonin, Silvana Konermann, Julia Joung, Jonathan S. Gootenberg, Omar O. Abudayyeh, Eric S. Lander
  • Patent number: 11771737
    Abstract: In embodiments, the invention provides a method of treating or preventing an adverse condition of the liver of a mammal, the method comprising administering to the mammal an effective amount of vancomycin and a checkpoint inhibitor. In embodiments, the invention provides a method of treating or preventing an adverse condition of the liver of a mammal, the method comprising administering to the mammal an effective amount of a primary bile acid.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: October 3, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Tim F. Greten, Chi Ma
  • Publication number: 20230303976
    Abstract: Disclosed are methods of isolating T cells and TCRs having antigenic specificity for a mutated amino acid sequence encoded by a cancer-specific mutation. Also disclosed are related methods of preparing a population of cells, populations of cells, TCRs, pharmaceutical compositions, and methods of treating or preventing cancer.
    Type: Application
    Filed: February 27, 2023
    Publication date: September 28, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Alena Gros, Steven A. Rosenberg
  • Publication number: 20230301984
    Abstract: Method embodiments are disclosed for treating retinal degeneration in a subject in need thereof. In some embodiments, the method comprises administering to the subject a therapeutically effective amount of compound, and/or a pharmaceutically acceptable salt, prodrug, solvate, hydrate, or tautomer thereof, selected from 3-(dibutylamino)-1-(1,3-dichloro-6-(trifluoromethyl)phenanthren-9-yl)propan-1-ol hydrochloride or a compound having a structure according to a formula selected from Formula I, II, or III, as described herein. In some non-limiting examples, the subject has retinitis pigmentosa, LCA, Stargardt’s macular dystrophy, cone-rod dystrophy, choroideremia or age-related macular degeneration.
    Type: Application
    Filed: July 1, 2021
    Publication date: September 28, 2023
    Applicant: The USA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Anand Swaroop, Yu Holly Chen, Manju Swaroop, Wei Zheng, Gregory Tawa, Anupam Mondal, Samantha Papal, Wenwei Huang, Zhiji Luo
  • Publication number: 20230303501
    Abstract: Disclosed herein are embodiments of a compound that inhibits c-Abl tyrosine kinase (also referred to herein as “c-Abl”). The compound embodiments described herein are novel c-Abl inhibitors that can bind to c-Abl at an allosteric site and inhibit its activity in various pathways. The compound embodiments also are capable of crossing the blood brain barrier and therefore are useful in inhibiting c-Abl activity as it affects pathways and/or proteins in the brain. The compound embodiments described herein are effective therapeutic agents for treating diseases involving c-Abl, such as cancers, motor neuron diseases, and neurodegenerative diseases. Also disclosed herein are embodiments of methods for making and using the c-Abl inhibitory compound embodiments.
    Type: Application
    Filed: March 30, 2023
    Publication date: September 28, 2023
    Applicants: The USA, as represented by the Secretary, Dept. of Health and Human Services, Pontificia Universidad Católica de Chile
    Inventors: Juan J. Marugan, Marc Ferrer, Noel T. Southall, Andres E. Dulcey, Xin Hu, Christopher R. Dextras, Daniel C. Talley, Alejandra Alvarez, Silvana Zanlungo, Rommy M. Von Bernhardi
  • Patent number: 11767498
    Abstract: An in vitro tissue plate may include a well plate, a fluidic plate disposed on a bottom surface of the well plate, and a media manifold disposed on a bottom surface of the fluidic plate. The well plate may have at least two wells, including a tissue well and a waste well. The fluid plate may include a fluid channel extending between and fluidly connecting the tissue well to the waste well. The media manifold may include a one or more media outlets fluidly connected to the fluid channel. A tissue layer may be deposited in the tissue well. The tissue layer may include human cells such as neurovascular cells.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 26, 2023
    Assignees: Massachusetts Institute of Technology, The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Johanna Bobrow, Todd Thorsen, David Walsh, Christina Zook, Min Jae Song, Marc Ferrer-Alegre, Sam Michael, Yen-Ting Tung, Molly Elizabeth Boutin
  • Publication number: 20230295550
    Abstract: Provided are inserts (100) for preparing a cell culture chamber(s), or array of chambers, inside of histology cassettes that are suitable for three-dimensional multicellular growth of a cell or cells into spheroids, organoids, or other 3D structures, such that the resulting 3D multi-cellular structures are ready and suitable for histology processing without transfer to a different receptacle or container. Further embodiments of the invention provide methods of preparing at least one cell culture chamber using the inserts, systems for growing three-dimensional multicellular spheroids comprising culturing cells within a cell culture chamber prepared using the inserts, and systems for analyzing at least one cultured cell in vitro comprising culturing cells within a cell culture chamber prepared using the inserts.
    Type: Application
    Filed: July 30, 2021
    Publication date: September 21, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Ralph E. Parchment, Thu A. Nguyen
  • Publication number: 20230295631
    Abstract: Disclosed herein are methods of treating a tumor in a subject, including administering to the subject one or more miRNA nucleic acids or variants (such as mimics or mimetics) thereof with altered expression in the tumor. Also disclosed herein are compositions including one or more miRNA nucleic acids. In some examples, the miRNA nucleic acids are modified miRNAs, for example, and miRNA nucleic acid including one or more modified nucleotides and/or a 5?-end and/or 3?-end modification. In particular examples, the modified miRNA nucleic acid is an miR-30a nucleic acid. Further disclosed herein are methods of diagnosing a subject as having a tumor with altered expression of one or more miRNA nucleic acids. In some embodiments, the methods include detecting expression of one or more miRNAs in a sample from the subject and comparing the expression in the sample from the subject to a control.
    Type: Application
    Filed: April 14, 2023
    Publication date: September 21, 2023
    Applicants: The United States of America, as represented by the Secretary, Dept. of Health and Human Services, miRecule, Inc.
    Inventors: Anthony D. Saleh, Carter Van Waes, Zhong Chen, Hui Cheng
  • Patent number: 11760794
    Abstract: Antibodies and antigen binding fragments that specifically bind to P. falciparum circumsporozoite protein and neutralize P. falciparum are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. The disclosed antibodies, antigen binding fragments, nucleic acids and vectors can be used, for example, to inhibit a P. falciparum infection.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: September 19, 2023
    Assignees: The United States of America, as Represented by the Secretary, Department of Health and Human Services, Sanaria Inc.
    Inventors: Robert Seder, Neville Kisalu, Azza Idris, Barbara Flynn, Stephen Hoffman
  • Patent number: 11759513
    Abstract: Attenuated G9P[6] rotavirus is disclosed herein. In some embodiments, pharmaceutical compositions are disclosed that include an attenuated G9P[6] rotavirus, or a component thereof. These compositions can be used to induce an immune response, such as a protective immune response, to a rotavirus. The compositions can be used as vaccines, such as for children (infants), for example in a prime boost strategy.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: September 19, 2023
    Assignee: The United States of America, as Represented by the Secretary, Department of Health and Human Services
    Inventors: Baoming Jiang, Yuhuan Wang
  • Patent number: 11760790
    Abstract: Antibodies and antigen binding fragments that specifically bind to HIV-1 Env and neutralize HIV-1 are disclosed. Nucleic acids encoding these antibodies, vectors and host cells are also provided. Methods for detecting HIV-1 using these antibodies are disclosed. In addition, the use of these antibodies, antigen binding fragment, nucleic acids and vectors to prevent and/or treat an HIV-1 infection is disclosed.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: September 19, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Paolo Lusso, Qingbo Liu, Peter Kwong, John Mascola, Young Do Kwon
  • Publication number: 20230287067
    Abstract: The invention provides human immunogenic epitopes of HEMO and HHLA2 human endogenous retroviruses (HERVs), which can be used as a peptide, polypeptide (protein), and/or in a vaccine or other composition for the prevention or therapy of cancer. The invention further provides a nucleic acid encoding the peptide or polypeptide (protein), a vector comprising the nucleic acid, a cell comprising the peptide, polypeptide (protein), nucleic acid, or vector, and compositions thereof.
    Type: Application
    Filed: January 21, 2021
    Publication date: September 14, 2023
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Jeffrey Schlom, Duane H. Hamilton, Claudia M. Palena, Renee N. Donahue
  • Patent number: 11752138
    Abstract: The disclosure provides methods of treating a patient having primary hyperoxaluria or idiopathic hyperoxaluria comprising administering a therapeutically effective amound of compound of the formula and pharmaceutically acceptable salts, solvates, and hydrates thereof to the patient. The variables, e.g. ring A, n, R, R3, R10, X, Y, and Z are defined herein. These compounds act as lactate dehydrogenase inhibitors and are useful inhibiting the conversion of glyoxylate to oxalate. When administered to a patient having a disease or disorder associated with elevated oxalate levels, such as PH type 1, type 2, or type 3 or idiopathic hyperoxaluria the compounds prevent or substantially reduce the amount and buildup of oxalate the patient's kidneys, bladder, urinary tract and other parts of the patient's body.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: September 12, 2023
    Assignees: VANDERBILT UNIVERSITY, THE UAB RESEARCH FOUNDATION, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Matthew Hall, Daniel J. Urban, John Knight, Ross Holmes, Kyle David Wood, Alex Waterson, Victor M. Darley-Usmar, Leonard M. Neckers
  • Patent number: 11753408
    Abstract: Disclosed are compounds of formula (I) and formula (II): wherein R1, R2, A, and B are as defined herein. Also disclosed is a method of blocking transmission of a Plasmodium parasite and a method of treating or preventing malaria comprising administering to an animal an effective amount of a first compound of formula (I) or (II) either alone or in combination with a second compound selected from elesclomol, NSC174938, NVP-AUY922, Maduramicin, Narasin, Alvespimycin, Omacetaxine, Thiram, Zinc pyrithione, Phanquinone, Bortezomib, Salinomycin sodium, Monensin sodium, Dipyrithione, Dicyclopentamethylene-thiuram disulfide, YM155, Withaferin A, Adriamycin, Romidepsin, AZD-1152-HQPA, CAY10581, Plicamycin, CUDC-101, Auranofin, Trametinib, GSK-458, Afatinib, and Panobinostat.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: September 12, 2023
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Loyola University of Chicago
    Inventors: Wenwei Huang, Hao Li, Wei Sun, Xiuli Huang, Paresma R. Patel, Hangmao Sun, Wei Zheng, Xiao Lu, Philip E. Sanderson, Myunghoon Kim, Meghan J. Orr, Gregory J. Tawa, Kim C. Williamson
  • Patent number: 11753627
    Abstract: The invention relates to a dengue virus tetravalent vaccine containing a common 30 nucleotide deletion (?30) in the 3?-untranslated region of the genome of dengue virus serotypes 1, 2, 3, and 4, or antigenic chimeric dengue viruses of serotypes 1, 2, 3, and 4.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: September 12, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen S. Whitehead, Brian R. Murphy, Lewis Markoff, Barry Falgout, Joseph Blaney, Kathryn Hanley, Ching-Juh Lai
  • Patent number: 11746372
    Abstract: Disclosed herein are method for separating, amplifying, or detecting a nucleic acid from a sample may comprise contacting a sample lysate with a plurality of buoyant, inorganic, nucleic-acid-capture microspheres. The nucleic-acid-capture microspheres may comprise unicellular hollow microspheres having a diameter between 5 and 300 ?m and/or a true particle density between 0.05 and 0.60 grams/cm3. The microspheres may comprise hollow soda-lime-borosilicate microspheres. In some embodiments, the microspheres comprises hollow soda-lime-borosilicate microspheres surrounded by an amorphous silica shell. Also disclosed are kits for performing the methods.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 5, 2023
    Assignees: GoDx, Inc., The United States of America, as Represented by the Secretary, Dep. of Health and Human Services
    Inventors: Chang Hee Kim, Lichen Xiang, Wendy A. Henderson, Xiao Jiang
  • Patent number: 11746335
    Abstract: The invention is related to a dengue virus or chimeric dengue virus that contains a mutation in the 3? untranslated region (3?-UTR) comprising a ?30 mutation that removes the TL-2 homologous structure in each of the dengue virus serotypes 1, 2, 3, and 4, and nucleotides additional to the ?30 mutation deleted from the 3?-UTR that removes sequence in the 5? direction as far as the 5? boundary of the TL-3 homologous structure in each of the dengue serotypes 1, 2, 3, and 4, or a replacement of the 3?-UTR of a dengue virus of a first serotype with the 3?-UTR of a dengue virus of a second serotype, optionally containing the ?30 mutation and nucleotides additional to the ?30 mutation deleted from the 3?-UTR; and immunogenic compositions, methods of inducing an immune response, and methods of producing a dengue virus or chimeric dengue virus.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: September 5, 2023
    Assignee: The Government of the United States of American, as represented by the Secretary, Department of Health and Human Services
    Inventors: Stephen S. Whitehead, Joseph E. Blaney, Brian R. Murphy, Ching-Juh Lai
  • Patent number: 11746086
    Abstract: Heptamethine cyanine fluorophore conjugates and conjugate precursors are disclosed. Methods of using the conjugates and conjugate precursors are also disclosed. The disclosed conjugates are neutral zwitterionic molecules and exhibit little or no aggregation.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: September 5, 2023
    Assignee: The USA, as represented by the Secretary, Department of Health and Human Services
    Inventors: Martin John Schnermann, Michael Philip Luciano, Roger Rauhauser Nani