Patents Assigned to Anokiwave, Inc.
-
Patent number: 12292716Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: GrantFiled: November 6, 2023Date of Patent: May 6, 2025Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 12294154Abstract: Register banks are used to allow for fast beam switching in a phased array system. Each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.Type: GrantFiled: March 5, 2024Date of Patent: May 6, 2025Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
-
Patent number: 12231135Abstract: A method and/or apparatus for tuning a frequency synthesizer device toward a prescribed frequency may input a signal into the input of the frequency synthesizer to produce an output signal having an output frequency, select a first one of a set of the above noted prescribed coarse curves, and compare the magnitude of the difference between the prescribed frequency and the output frequency. Next, the method selects a second of the set of coarse curves as a function of the magnitude of the difference between the prescribed frequency and the output frequency. Preferably, the method selects the second of the set of coarse curves by selecting one or more of the coarse curves out of the sequential frequency order as a function of the magnitude of the difference between the prescribed frequency and the output frequency.Type: GrantFiled: January 27, 2023Date of Patent: February 18, 2025Assignee: Anokiwave, Inc.Inventors: Jun Li, Kartik Sridharan, Gaurav Menon, Antonio Geremia, Scott Humphreys, Akhil Garlapati, Shamsun Nahar, Kevin Greene
-
Patent number: 12126092Abstract: A phased array system has a substrate, a plurality of elements, and a plurality of beamforming ICs. Each beamforming IC has a first set of element interfaces and a second set of element interfaces. The first set of element interfaces may be configured to be polarized in a first polarization, while the second set of element interfaces may be configured to be polarized in a second (different) polarization. Each beamforming IC has a first common interface electrically coupled with its first set of element interfaces and, in a corresponding manner, each beamforming IC also has a second common interface electrically coupled with its second set of element interfaces. The system further has an interconnect element (e.g., a circuit trace, metallization on a PCB, etc.) electrically coupling the first common interface with the second common interface of another beamforming IC.Type: GrantFiled: August 29, 2023Date of Patent: October 22, 2024Assignee: Anokiwave, Inc.Inventors: Trang Thai, Jason L. Durbin, Vipul Jain, Michael Coolen
-
Patent number: 12063049Abstract: Digital post-processing of time-to-digital converter (TDC) output data can be used to map each TDC code to the ideal one, but this requires knowing the TDC input-output mapping. Therefore, a calibration system and method are provided for characterizing operation of a TDC to compensate for non-idealities. Input signals having a known time difference are provided to the TDC, and a mapping between the TDC output and the known time difference is stored in a mapping table. With the described method, it is possible to input an input ramp of very low slope to construct this mapping to a desired resolution during a background calibration procedure. This characterizing and mapping can be performed across a range of input signals having different known time differences. After calibration, a mapping table can be used by a mapping circuit of the TDC or by a digital post-processing function to provide a compensated TDC output.Type: GrantFiled: March 1, 2022Date of Patent: August 13, 2024Assignee: Anokiwave, Inc.Inventors: Eythan Familier, Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 12015451Abstract: Joint transmit/receive image compensation is performed with the transceiver online and on an ongoing basis by using blind image compensation techniques when in a receive mode in order to converge receive image compensation coefficients based on “live” receive data and then in a transmit mode, after convergence of the receive image compensation coefficients, coupling the “live” transmit signal to the receive signal path to adapt the transmit image compensation coefficients.Type: GrantFiled: May 11, 2022Date of Patent: June 18, 2024Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Eric Ng
-
Patent number: 12003224Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.Type: GrantFiled: September 3, 2021Date of Patent: June 4, 2024Assignee: Anokiwave, Inc.Inventors: Susanne Paul, Akhil Garlapati, Yan Li
-
Patent number: 11955722Abstract: A phased array system has a substrate, a plurality of elements, a beamforming IC, and a plurality of feedlines electrically coupling the plurality of elements with at least one beamforming IC. In preferred embodiments, the feedlines are non-intersecting, symmetric feedlines that mitigate cross-polarization.Type: GrantFiled: April 8, 2022Date of Patent: April 9, 2024Assignee: Anokiwave, Inc.Inventors: Trang Thai, Jason Leo Durbin
-
Patent number: 11949164Abstract: Register banks are used to allow for fast beam switching in a phased array system. Each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.Type: GrantFiled: January 27, 2023Date of Patent: April 2, 2024Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
-
Patent number: 11942696Abstract: Exemplary embodiments include RF integrated circuit (RFIC) chips including programmable on-chip element swapping circuitry, channel swapping circuitry, and/or phase rotation circuitry to allow a common software implementation or parameter computation to be used across multiple products having different arrangements and orientations of RFICs and elements.Type: GrantFiled: May 5, 2022Date of Patent: March 26, 2024Assignee: Anokiwave, Inc.Inventors: Lewis N. Cohen, Robert J. McMorrow, Jason Leo Durbin, Vipul Jain
-
Patent number: 11809141Abstract: A time-to-digital converter (TDC) uses voltage as a representation of time offset. A voltage change is induced over a time period from a start signal to a stop signal. The final voltage is then measured, and the voltage measurement is mapped to a time value representing the time between the start signal and the stop signal. The voltage change can be increasing or decreasing, e.g., by charging or discharging a capacitive circuit between the start signal and the stop signal. The voltage can be measured using an analog-to-digital converter (ADC) or other voltage measurement circuit. The voltage measurement can be mapped to the time value in any manner, such as, for example, using a transfer function or using a mapping table that provides a time value for each possible voltage measurement value.Type: GrantFiled: March 1, 2022Date of Patent: November 7, 2023Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Eythan Familier, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 11749889Abstract: A phased array system has a substrate, a plurality of elements, and a plurality of beamforming ICs. Each beamforming IC has a first set of element interfaces and a second set of element interfaces. The first set of element interfaces may be configured to be polarized in a first polarization, while the second set of element interfaces may be configured to be polarized in a second (different) polarization. Each beamforming IC has a first common interface electrically coupled with its first set of element interfaces and, in a corresponding manner, each beamforming IC also has a second common interface electrically coupled with its second set of element interfaces. The system further has an interconnect element (e.g., a circuit trace, metallization on a PCB, etc.) electrically coupling the first common interface with the second common interface of another beamforming IC.Type: GrantFiled: April 8, 2022Date of Patent: September 5, 2023Assignee: Anokiwave, Inc.Inventors: Trang Thai, Jason L. Durbin, Vipul Jain, Michael Coolen
-
Patent number: 11743026Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: GrantFiled: February 28, 2022Date of Patent: August 29, 2023Assignee: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 11728858Abstract: This patent application describes systems, devices, and methods for element-level self-calculation of phased array vectors by a beam forming ASIC using interpolation and a look-up table for calculation of phase setting values such as for fast beam steering.Type: GrantFiled: April 16, 2021Date of Patent: August 15, 2023Assignee: Anokiwave, Inc.Inventors: Jason Leo Durbin, Nitin Jain
-
Patent number: 11695216Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.Type: GrantFiled: March 7, 2022Date of Patent: July 4, 2023Assignee: Anokiwave, Inc.Inventors: Timothy Carey, Nitin Jain, Jason Leo Durbin, David W. Corman, Vipul Jain
-
Patent number: 11652267Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.Type: GrantFiled: July 7, 2021Date of Patent: May 16, 2023Assignee: Anokiwave, Inc.Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid
-
Patent number: 11637371Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.Type: GrantFiled: June 30, 2021Date of Patent: April 25, 2023Assignee: Anokiwave, Inc.Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
-
Patent number: 11502419Abstract: A patch array has a routing printed circuit board with a plurality of layers for routing signals, and a plurality of printed circuit board patches that each has at least one through-via. The plurality of patches are mounted with the routing printed circuit board. In addition, the plurality of printed circuit board patches are formed in compliance with standard printed circuit board rules.Type: GrantFiled: November 20, 2020Date of Patent: November 15, 2022Assignee: Anokiwave, Inc.Inventors: Trang Thai, Jason Leo Durbin, Peter Moosbrugger
-
Publication number: 20220303112Abstract: Embodiments of the present invention synchronize multiple synthesizers, such as phase-locked loops (PLLs), in a manner that does not require communication or coordination between the synthesizers. Specifically, each synthesizer is part of a synthesizer circuit that includes a synthesizer (e.g., a PLL), a phase measurement circuit, and a synchronization circuit. A common reference signal (e.g., an alternating clock signal) is provided to the synthesizer circuits. In one exemplary embodiment, in each synthesizer circuit, the phase measurement circuit measures a phase difference between the reference signal and a corresponding output of the synthesizer, and the synchronization circuit adjusts the synthesizer operation based on the measured phase difference in such a way that all of the synthesizers operate in-phase with one another relative to the common reference signal, without having any communication or coordination between the two synthesizer circuits other than provision of the common reference signal.Type: ApplicationFiled: February 28, 2022Publication date: September 22, 2022Applicant: Anokiwave, Inc.Inventors: Kartik Sridharan, Jun Li, Gaurav Menon, Shamsun Nahar, Akhil Garlapati, Scott Humphreys, Antonio Geremia
-
Patent number: 11418971Abstract: A beamforming integrated circuit system is configured to optimize performance. Among other things, the system may run at a lower power than conventional integrated circuits, selectively disable branches to control certain system functions, and/or selectively position ground pads around receiving pads to enhance isolation. The system also may use a beamforming integrated circuit as a distribution circuit for a number of similar or like beamforming integrated circuits.Type: GrantFiled: December 24, 2018Date of Patent: August 16, 2022Assignee: Anokiwave, Inc.Inventors: Pavel Brechko, David W. Corman, Vipul Jain, Shamsun Nahar, Jason Durbin, Nitin Jain