Patents Assigned to Applied Biosystems
  • Patent number: 8921092
    Abstract: A system and method are described for electroporating a sample that utilizes one or more sets of electrodes that are spaced apart in order to hold a surface tension constrained sample between the electrodes. The first electrode is connected to the lower body of the system while the second electrode is connected to the upper body. Both electrodes are connected to a pulse generator. Each electrode has a sample contact surface such that the first electrode and the second electrode may be positioned to hold a surface tension constrained sample between the two sample contact surfaces and the sample may receive a selected electric pulse.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: December 30, 2014
    Assignee: Applied Biosystems LLC
    Inventors: Richard Jarvis, Mike Byrom, Dmitriy Ovcharenko
  • Patent number: 8921098
    Abstract: An instrument for monitoring replication of DNA is provided.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: December 30, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Michael R. Gambini, Edward J. Lakatos, Anthony L. Cerrone, Eugene F. Young, Susan Atwood Stone, Judith K. Atwood
  • Publication number: 20140374407
    Abstract: A heating apparatus comprising a support base and a microplate having a first surface and an opposing second surface. The microplate is positioned adjacent the support base and comprises a plurality of wells formed in the first surface thereof. Each of the plurality of wells is sized to receive an assay therein. A sapphire crystalline transparent window is positioned adjacent the microplate opposing the support base. A heating device heats the transparent window in response to a control system.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 25, 2014
    Applicant: Applied Biosystems, LLC
    Inventors: Kirk HIRANO, Patrick Kinney, Douwe Haga, Jason Babcoke, Albert Carrillo, H. Pin Kao, James Nurse
  • Publication number: 20140377750
    Abstract: Methods and kits for detecting a target nucleic acid in a sample are described. In some embodiments, the sample to be analyzed includes a primer which hybridizes to at least a portion of the target nucleic acid, a probe having a first region which hybridizes to at least a portion of the target nucleic acid and a second region having a detectable label, a polymerase which extends the hybridized primer and an enzyme comprising nuclease activity that can cleave the hybridized hybridization probe to thereby release a labeled probe fragment. In some embodiments, the sample can then be contacted with a solid support comprising surface bound capture probes which can hybridize to the labeled probe fragment(s). These capture probes more readily bind to the probe fragment(s) than to the intact hybridization probe. The label can then be detected on the support surface. In this manner, improved discrimination between the probe fragments and the intact hybridization probes can be achieved.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 25, 2014
    Applicant: Applied Biosystems, LLC
    Inventors: Kristian M. Scaboo, Vissarion Aivazachvili, Timothy Z. Liu, Robert G. Eason, Konrad Faulstich
  • Patent number: 8906325
    Abstract: A vacuum assist apparatus can comprise a microplate. The microplate can comprise a first surface and an opposing second surface. A plurality of wells can be formed in the first surface of the microplate. Each of the plurality of wells can be sized to receive an assay therein. A support base can comprise a fluid passage. The microplate can be positioned adjacent and in contact with the support base. A pressure device, in fluid communication with the fluid passage, can exert a vacuum within the fluid passage to actively retain the microplate in the contact with the support base.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: December 9, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Mark F. Oldham, Adrian Fawcett
  • Patent number: 8889355
    Abstract: Ligation-enhanced nucleic acid detection assay embodiments for detection of RNA or DNA are described. The assay embodiments rely on ligation of chimeric oligonucleotide probes to generate a template for amplification and detection. The assay embodiments are substantially independent of the fidelity of a polymerase for copying compromised nucleic acid. Very little background amplification is observed and as few as 1000 copies of target nucleic acid can be detected. Method embodiments are particularly adept for detection of RNA from compromised samples such as formalin-fixed and paraffin-embedded samples. Heavily degraded and cross-linked nucleic acids of compromised samples, in which classic quantitative real time PCR assays typically fail to adequately amplify signal, can be reliably detected and quantified.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: November 18, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: R. Scott Kuersten, Brittan Pasloske
  • Publication number: 20140326898
    Abstract: System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light.
    Type: Application
    Filed: March 31, 2014
    Publication date: November 6, 2014
    Applicant: Applied Biosystems, LLC
    Inventors: Richard REEL, Eric NORDMAN
  • Publication number: 20140329703
    Abstract: The present invention provides improved methods and compositions for RNA isolation. In particular embodiments the present invention concerns the use of methods and compositions for the isolation of full-length RNA from fixed tissue samples. The present invention provides methods for digesting and extracting RNA from a fixed tissue sample.
    Type: Application
    Filed: March 12, 2014
    Publication date: November 6, 2014
    Applicant: Applied Biosystem, LLC
    Inventors: Richard CONRAD, Emily Zeringer
  • Patent number: 8871470
    Abstract: Aspects of the present teachings describe a method and apparatus for automatically controlling a block temperature to reduce undershooting and overshooting of the temperatures of a sample contained in the block and participating in a polymerase chain reaction (PCR). The adaptive thermal block temperature control begins when a sample temperature enters a sample window region between a preliminary setpoint temperature and a target setpoint temperature for the sample. Based on thermodynamic behavior of the sample and the predetermined phase of PCR, predicting a time period measured subsequent to the preliminary setpoint temperature when the sample will reach the target setpoint suitable for the predetermined phase of PCR. During this time period, varying the block temperature ramp rate with a series of cooling and heating changes to ensure the block temperature reaches the target setpoint temperature at approximately the same time as the sample reaches the same.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: October 28, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Chee Kiong Lim, Chee Wee Ching
  • Patent number: 8865473
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. A detecting apparatus may be configured so that light from luminescent samples pass through a collimator, a first lens, a filter, and a camera lens, whereupon an image is created by the optics on the charge-coupled device (CCD) camera. The detecting apparatus may further include central processing control of all operations, multiple wavelength filter wheel, and/or a robot for handling of samples and reagents.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Michael Gambini, Jeff Levi, John Voyta, Bruce E. DeSimas, II, Edward Lakatos, Israel Metal, George Sabak, Yongdong Wang, Susan A. Atwood-Stone
  • Patent number: 8865405
    Abstract: The invention relates to methods for isolating and/or identifying nucleic acids. The invention also provides kits for isolating and/or identifying nucleic acids.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 21, 2014
    Assignee: Applied BioSystems LLC
    Inventors: Douglas Bost, Lawrence Greenfield
  • Patent number: 8865478
    Abstract: Reagents, kits and methods for detecting biological molecules by energy transfer from an activated chemiluminescent substrate to an energy acceptor dye such as a J-aggregated dye are described.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 21, 2014
  • Patent number: 8859204
    Abstract: A method comprises loading a sample portion into a sample chamber which comprises means for minimizing diffusion of the sample portion, subjecting the sample portion to an amplification step, and determining whether the sample portion contains at least one molecule of a target nucleic acid. If the sample portion contains a single molecule of the target nucleic acid, the sample portion would attain a detectable concentration of the target nucleic acid after a single round of amplification. Also, a microfluidic device comprising a sample portion and a sample chamber comprising means for minimizing diffusion of the sample portion. Also, a microfluidic device comprising a sample chamber and an amplification targeting reagent positioned in the first sample chamber.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: October 14, 2014
    Assignees: Applied Biosystems, LLC, The United States of America, As Represented by the Secretary, Department of Health and Human Services
    Inventors: James F. Brown, Jonathan E. Silver
  • Patent number: 8859271
    Abstract: An apparatus and method for rapid thermal cycling including a thermal diffusivity plate. The thermal diffusivity plate can provide substantial temperature uniformity throughout the thermal block assembly during thermal cycling by a thermoelectric module. An edge heater can provide substantial temperature uniformity throughout the thermal block assembly during thermal cycling.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: October 14, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Hon Siu Shin, Jew Kwee Ngui, Chee Kiong Lim, Ching Ong Lau, Lim Hi Tan, Yang Hooi Kee
  • Patent number: 8835625
    Abstract: Disclosed, among other things, are compounds having the structure wherein X comprises a bond or a linker, LABEL comprises at least one detectable label, W1 taken alone is —H or —OH, W2 is —OH or a non-extendable moiety, W3 when taken alone is —H or when taken together with W1 is —CH2—O—, and W4 is OH, monophosphate, diphosphate, or triphosphate. Also disclosed are labeled polynucleotide compounds and methods of use thereof.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: September 16, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Barnett Rosenblum, Geun-sook Jeon, Shaheer Khan
  • Patent number: 8828664
    Abstract: Sample preparation processes for in situ RNA or DNA analysis, methods and compositions therefor are provided. Processes provided herein allow DNA or RNA analysis to be carried out in the same tube or on an aliquot of the prepared sample without centrifugation or extraction. The preparation process can be carried out at room temperature in as little as seven minutes and is amenable to high throughput processing using manual or robotic platforms.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 9, 2014
    Assignee: Applied Biosystems, LLC.
    Inventors: Richard Fekete, Annalee Nguyen
  • Patent number: 8822183
    Abstract: A device for amplifying target nucleic acid in a sample can include a planar fluidic assembly including a transparent substrate, a porous material layer on a surface of the transparent substrate, and a cover over the porous material layer and sealingly affixed to the substrate. The cover may be spaced from the porous material layer and a flow channel defined between the porous material layer and the cover. The flow channel may have a uniform cross-section from a first end to a second end.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: September 2, 2014
    Assignees: Applied Biosystems, LLC, The United States of America, as represented by the Secretary, Department of Health and Sciences
    Inventors: James F. Brown, Jonathan E. Silver
  • Patent number: 8815546
    Abstract: A two-step multiplex amplification reaction includes a first step which truncates the standard initial multiplex amplification round to “boost” the sample copy number by only a 100-1000 fold increase in the target. Following the first step the product is divided into optimized secondary single amplification reactions, each containing one of the primer sets that were used previously in the first or multiplexed booster step. The booster step can occur using an aqueous target nucleic acid or using a solid phase archived nucleic acid. In particular, nucleic acid sequences that uniquely identify E. Coli were identified using the multiplex amplification method.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 26, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: John Gerdes, Elaine Best, Jeffrey M. Marmaro
  • Patent number: 8809513
    Abstract: The present invention provides novel algorithms for designing oligonucleotides that do not substantially hybridize to a small group of unwanted transcripts, while hybridizing to most other transcripts. Such oligonucleotides are particularly useful as primers for reverse transcription. The invention also provides compositions containing oligonucleotides that do not substantially hybridize to a small group of unwanted transcripts, while hybridizing to most other transcripts.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: August 19, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Xiaowei Wang, Xiaohui Wang, Robert Setterquist
  • Patent number: 8809040
    Abstract: An apparatus and method are provided for differentiating multiple detectable signals by excitation wavelength. The apparatus can include a light source that can emit respective excitation light wavelengths or wavelength ranges towards a sample in a sample retaining region, for example, in a well. The sample can contain two or more detectable markers, for example, fluorescent dyes, each of which can be capable of generating increased detectable emissions when excited in the presence of a target component. The detectable markers can have excitation wavelength ranges and/or emission wavelength ranges that overlap with the ranges of the other detectable markers. A detector can be arranged for detecting an emission wavelength or wavelength range emitted from a first marker within the overlapping wavelength range of at least one of the other markers.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: August 19, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Howard G. King, Steven J. Boege, Eugene F. Young, Mark F. Oldham