Patents Assigned to Applied Materials, Inc.
  • Publication number: 20130056347
    Abstract: Apparatus and method for physical vapor deposition are provided. In some embodiments, a cooling ring to cool a target in a physical vapor deposition chamber may include an annular body having a central opening; an inlet port coupled to the body; an outlet port coupled to the body; a coolant channel disposed in the body and having a first end coupled to the inlet port and a second end coupled to the outlet port; and a cap coupled to the body and substantially spanning the central opening, wherein the cap includes a center hole.
    Type: Application
    Filed: August 14, 2012
    Publication date: March 7, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: BRIAN WEST, GOICHI YOSHIDOME, RALF HOFMANN
  • Patent number: 8389376
    Abstract: Methods are provided for forming a structure that includes an air gap. In one embodiment, a method is provided for forming a damascene structure including depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen-containing material, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature definition in the organic layer and the porous low dielectric constant layer, filing the feature definition with a conductive material therein, depositing a mask layer on the organic layer and the conductive material disposed in the feature definition, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive material.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Li-Qun Xia, Bok Hoen Kim, Derek R. Witty, Hichem M'Saad
  • Patent number: 8388412
    Abstract: Retaining rings with curved surfaces are described. The curved surfaces prevent damage to a fixed abrasive polishing pad when the retaining ring is used in a polishing process. The curved surfaces are on the bottom surface of the ring, such as along the outer diameter and/or along the sidewalls of channels formed in the bottom of the ring.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Gopalakrishna B. Prabhu, Yin Yuan, Jeonghoon Oh, Gregory E. Menk
  • Patent number: 8388853
    Abstract: Embodiments of the present invention provide apparatus and methods for supporting, positioning or rotating a semiconductor substrate during processing. One embodiment of the present invention provides a method for processing a substrate comprising positioning the substrate on a substrate receiving surface of a susceptor, and rotating the susceptor and the substrate by delivering flow of fluid from one or more rotating ports.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Blake Koelmel, Nyi O. Myo
  • Patent number: 8389418
    Abstract: The present disclosure relates to a solution for selectively removing metal, such as Ta or TaN, from a substrate, such as an aluminum containing substrate. The solution comprises an acid, such as HF or buffered HF, an ingredient comprising a fluorine ion, such as ammonium fluoride (NH4F), ethylene glycol, and water. A method of selectively removing metal from a substrate using this solution is also disclosed.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jeremy W. Epton, John Deem
  • Patent number: 8392012
    Abstract: A computer-implemented method includes receiving a first sequence of current spectra of reflected light from a first zone of a substrate. A second sequence of current spectra of reflected light from a second zone of the substrate is received. Each current spectrum from the first sequence of current spectra is compared to a plurality of reference spectra from a first reference spectra library to generate a first sequence of best-match reference spectra. Each current spectrum from the second sequence of current spectra is compared to a plurality of reference spectra from a second reference spectra library to generate a second sequence of best-match reference spectra. The second reference spectra library is distinct from the first reference spectra library.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jeffrey Drue David, Boguslaw A. Swedek, Harry Q. Lee
  • Patent number: 8390980
    Abstract: Embodiments of the present invention provide a cost effective electrostatic chuck assembly capable of operating over a wide temperature range in an ultra-high vacuum environment while minimizing thermo-mechanical stresses within the electrostatic chuck assembly. In one embodiment, the electrostatic chuck assembly includes a dielectric body having chucking electrodes which comprise a metal matrix composite material with a coefficient of thermal expansion (CTE) that is matched to the CTE of the dielectric body.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: March 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Steven V. Sansoni, Cheng-Hsiung Tsai, Shambhu N. Roy, Karl M. Brown, Vijay D. Parkhe, Hari Ponnekanti
  • Publication number: 20130048605
    Abstract: A method of etching a substrate comprises forming on the substrate, a plurality of double patterning features composed of silicon oxide, silicon nitride, or silicon oxynitride. The substrate having the double patterning features is provided to a process zone. An etching gas comprising nitrogen tri-fluoride, ammonia and hydrogen is energized in a remote chamber. The energized etching gas is introduced into the process zone to etch the double patterning features to form a solid residue on the substrate. The solid residue is sublimated by heating the substrate to a temperature of at least about 100° C.
    Type: Application
    Filed: August 23, 2012
    Publication date: February 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Kedar SAPRE, Jing Tang, Ajay Bhatnagar, Nitin Ingle, Shankar Venkataraman
  • Publication number: 20130052827
    Abstract: A method of suppressing the etch rate for exposed silicon-and-oxygen-containing material on patterned heterogeneous structures is described and includes a two stage remote plasma etch. Examples of materials whose selectivity is increased using this technique include silicon nitride and silicon. The first stage of the remote plasma etch reacts plasma effluents with the patterned heterogeneous structures to form protective solid by-product on the silicon-and-oxygen-containing material. The plasma effluents of the first stage are formed from a remote plasma of a combination of precursors, including a nitrogen-containing precursor and a hydrogen-containing precursor. The second stage of the remote plasma etch also reacts plasma effluents with the patterned heterogeneous structures to selectively remove material which lacks the protective solid by-product. The plasma effluents of the second stage are formed from a remote plasma of a fluorine-containing precursor.
    Type: Application
    Filed: April 18, 2012
    Publication date: February 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Yunyu Wang, Anchuan Wang, Jingchun Zhang, Nitin K. Ingle, Young S. Lee
  • Publication number: 20130048987
    Abstract: Embodiments of the present invention provide p-i-n structures and methods for forming p-i-n structures useful, for example, in photovoltaic cells. In some embodiments, a method for forming a p-i-n structure on a substrate may include forming a bi-layer p-type layer on the substrate by: depositing a microcrystalline p-type layer atop the protective layer; and depositing an amorphous p-type layer atop the microcrystalline p-type layer; depositing an amorphous i-type layer via hot wire chemical vapor deposition atop the amorphous p-type layer; and depositing an amorphous n-type layer atop the amorphous i-type layer. A p-i-n structure may include a bi-layer p-type layer disposed above a substrate, the bi-layer p-type layer having a microcrystalline p-type layer and an amorphous p-type layer disposed atop the microcrystalline p-type layer; an amorphous i-type layer disposed atop the bi-layer p-type layer; and an n-type layer disposed atop the i-type layer.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 28, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: SUKTI CHATTERJEE
  • Publication number: 20130052768
    Abstract: A laser scanning apparatus that uses a polygonal mirror and a beam shaper for laser drilling of holes in one or more layers during solar cell fabrication is provided. The apparatus may be used to laser drill holes in a back side passivation layer of a solar cell during back electrical contact formation. The apparatus includes the use of a polygonal mirror to improve the speed of the back electrical formation of a solar cell. The apparatus may also include the use of a beam shaper to tune the profile of the beam to prevent damage to the underlying solar cell substrate during laser drilling operations. A laser scanning module is provided which controls the speed and timing of linear movement of substrates and the operation of the laser scanning apparatus in a closed loop manner for laser drilling of material layers disposed on the substrates.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 28, 2013
    Applicant: Applied Materials, Inc.
    Inventors: James M. Gee, Jeffrey L. Franklin
  • Patent number: 8382885
    Abstract: A filter for filtering a fluid in a substrate processing apparatus comprises first and second stages that are connected to one another. A delivery system provides a vaporized liquid to the filter. The first stage of the filter comprises a basic compound, and the second stage of the filter comprises a desiccant. A second filter comprises a permeation filter with permeable membrane to filter the fluid. Methods of filtering the fluid to reduce formation of undesirable process residues using the filter(s) are also described.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Hichem M'Saad
  • Patent number: 8382466
    Abstract: A method and apparatus for patterning a substrate are provided. A template is formed by applying a precursor material to a patterned master substrate and curing or solidifying the precursor material. The template is detached from the master substrate using a carrier having a curved surface. The template is coated with a patterning material, and is then detached from the carrier and applied to the substrate to be patterned. The template is then dissolved without affecting the patterning material, and the patterning material may thereafter be finished to develop the pattern. In an alternate embodiment, the patterning material may be applied to the substrate and then imprinted using the template.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Brian N. Hubert
  • Patent number: 8382180
    Abstract: An apparatus for transferring substrates in a processing system where the substrate is exposed to high temperatures is provided. In one embodiment a blade for transporting a substrate is provided. The blade comprises a base having an arcuate lateral shoulder, a first finger extending outward from and perpendicular to the base, a second finger extending outward from the base and parallel to and spaced-apart from the first finger, a first support tab configured to support the substrate and positioned along the arcuate lateral shoulder, a second support tab configured to support the substrate and coupled with the first finger, and a third support tab configured to support the substrate coupled with the second finger, wherein the arcuate lateral shoulder extends from an outer edge of the first finger to an outer edge of the second finger.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: February 26, 2013
    Assignee: Applied Material, Inc.
    Inventors: Dinesh Kanawade, Craig R. Metzner, Chandrasekhar Balasubramanyam
  • Patent number: 8382939
    Abstract: A method and apparatus for providing flow into a processing chamber are provided. In one embodiment, a vacuum processing chamber is provided that includes a substrate support pedestal disposed in an interior volume of a chamber body, a lid enclosing the interior volume, a gas distribution plate positioned below the lid and above the substrate support pedestal, and a vortex inducing gas inlet oriented to induce a vortex of gas circulating in a plenum around a center line of the chamber body prior to the gas passing through the gas distribution plate.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Michael Charles Kutney, Roger Alan Lindley
  • Patent number: 8381677
    Abstract: A method and apparatus for processing a substrate are provided. The chamber body comprises a chamber bottom and a sidewall having a slit valve. A substrate support comprising a support body is disposed in the chamber body. A first end of at least one wide RF ground strap is coupled with the support body and a second end of at least one RF ground strap is coupled with the chamber bottom. At least one extension bar is positioned along a peripheral edge of the support body. The method comprises providing a processing chamber having a slit valve and a substrate support, providing RF power to a distribution plate disposed over the substrate support, flowing gas through the distribution plate, plasma processing a substrate disposed on the substrate support, and reducing the generation of plasma adjacent to the slit valve.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Beom Soo Park, Robin L. Tiner, Soo Young Choi, John M. White
  • Patent number: 8382897
    Abstract: Methods for gas delivery to a process chamber are provided herein. In some embodiments, a method may include flowing a process gas through one or more gas conduits, each gas conduit having an inlet and an outlet for facilitating the flow of gas through the gas conduits and into a gas inlet funnel having a second volume, wherein each gas conduit has a first volume less than the second volume, and wherein each gas conduit has a cross-section that increases from a first cross-section proximate the inlet to a second cross-section proximate the outlet but excluding any intersection points between the gas inlet funnel and the gas conduit, and wherein the second cross-section is non-circular; and delivering the process gas to the substrate via the gas inlet funnel.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Kedarnath Sangam, Anh N. Nguyen
  • Patent number: 8383002
    Abstract: The disclosure concerns a method of processing a workpiece or in a plasma reactor chamber, using independent gas injection at the wafer edge.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dan Katz, David Palagashvili, Michael D. Willwerth, Valentin N. Todorow, Alexander M. Paterson
  • Patent number: 8382900
    Abstract: A system and method for controlling deposition of thin films on substrates. One embodiment includes a vacuum chamber; a plurality of sources located inside the vacuum chamber; and a plurality of gas tubes, each of the plurality of gas tubes comprising a first volume for delivering precursor gas and a second volume for providing pumping.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Michael W. Stowell
  • Patent number: 8382999
    Abstract: Radial distribution of etch rate is controlled by controlling the respective duty cycles of pulsed VHF source power applied to the ceiling and pulsed HF or MF bias power on the workpiece. Net average electrical charging of the workpiece is controlled by providing an electronegative process gas and controlling the voltage of a positive DC pulse on the workpiece applied during pulse off times of the pulsed VHF source power.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 26, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Ankur Agarwal, Kenneth S. Collins, Shahid Rauf, Kartik Ramaswamy, Thorsten B. Lill