Patents Assigned to Applied Materials, Inc.
  • Patent number: 8372753
    Abstract: A method and apparatus for cleaning layers of solar cell substrates is disclosed. The substrate is exposed to a reactive gas that may comprise neutral radicals comprising nitrogen and fluorine, or that may comprise anhydrous HF and water, alcohol, or a mixture of water and alcohol. The reactive gas may further comprise a carrier gas. The reactive gas etches the solar cell substrate surface, removing oxygen and other impurities. When exposed to the neutral radicals, the substrate grows a thin film containing ammonium hexafluorosilicate, which is subsequently removed by heat treatment.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 12, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Virendra V S Rana, Michael P. Stewart
  • Publication number: 20130032085
    Abstract: Embodiments of the invention disclosed herein generally relate to a hydride vapor phase epitaxy (HVPE) deposition chamber that utilizes a plasma generation apparatus to form an activated precursor gas that is used to rapidly form a high quality compound nitride layer on a surface of a substrate. In one embodiment, the plasma generation apparatus is used to create a desirable group-III metal halide precursor gas that can enhance the deposition reaction kinetics, and thus reduce the processing time and improve the film quality of a formed group-III metal nitride layer. In addition, the chamber may be equipped with a separate nitrogen containing precursor activated species generator to enhance the activity of the delivered nitrogen precursor gases.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 7, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Hiroji HANAWA, Yuriy Melnik, Donald J.K. Olgado, Karl M. Brown, Son T. Nguyen, Kevin S. Griffin
  • Publication number: 20130034666
    Abstract: Methods and systems for depositing material on a substrate are described. One method may include providing a processing chamber partitioned into a first plasma region and a second plasma region. The method may further include delivering the substrate to the processing chamber, where the substrate may occupy a portion of the second plasma region. The method may additionally include forming a first plasma in the first plasma region, where the first plasma may not directly contact the substrate, and the first plasma may be formed by activation of at least one shaped radio frequency (“RF”) coil above the first plasma region. The method may moreover include depositing the material on the substrate to form a layer, where one or more reactants excited by the first plasma may be used in deposition of the material.
    Type: Application
    Filed: August 1, 2011
    Publication date: February 7, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Qiwei Liang
  • Publication number: 20130034968
    Abstract: A method of etching exposed silicon-and-carbon-containing material on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and an oxygen-containing precursor. Plasma effluents from the remote plasma are flowed into a substrate processing region where the plasma effluents react with the exposed regions of silicon-and-carbon-containing material. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon-and-carbon-containing material from the exposed silicon-and-carbon-containing material regions while very slowly removing other exposed materials. The silicon-and-carbon-containing material selectivity results partly from the presence of an ion suppression element positioned between the remote plasma and the substrate processing region. The ion suppression element reduces or substantially eliminates the number of ionically-charged species that reach the substrate.
    Type: Application
    Filed: October 24, 2011
    Publication date: February 7, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Jingchun Zhang, Anchuan Wang, Nitin K. Ingle, Yunyu Wang, Young Lee
  • Patent number: 8368308
    Abstract: Embodiments of the present invention generally provide an inductively coupled plasma (ICP) reactor having a substrate RF bias that is capable of control of the RF phase difference between the ICP source (a first RF source) and the substrate bias (a second RF source) for plasma processing reactors used in the semiconductor industry. Control of the RF phase difference provides a powerful knob for fine process tuning. For example, control of the RF phase difference may be used to control one or more of average etch rate, etch rate uniformity, etch rate skew, critical dimension (CD) uniformity, and CD skew, CD range, self DC bias control, and chamber matching.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Samer Banna, Valentin N. Todorow
  • Patent number: 8365682
    Abstract: Substrate support methods and apparatus include vertically aligned lift pins that have bearing surfaces that engage friction plates and/or magnetic fields to maintain the vertical orientation of the lift pins during substrate lifting. In some embodiments, a magnetic field and/or weighting may alternatively or additionally be used to control the vertical orientation of the lift pins, limit the angle of the lift pins, and/or prevent the lift pins from unintentionally binding in a susceptor as the susceptor is raised and prevent the resulting uneven support of the substrate.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Wendell T. Blonigan, Carl Sorensen, John M. White, Robin L. Tiner
  • Patent number: 8367227
    Abstract: Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Kenneth S. Collins, Ren-Guan Duan, Senh Thach, Thomas Graves, Xiaoming He, Jie Yuan
  • Patent number: 8367983
    Abstract: Methods and apparatus for processing substrates and measuring the temperature using radiation pyrometry are disclosed. A reflective layer is provided on a window of a processing chamber. A radiation source providing radiation in a first range of wavelengths heats the substrate, the substrate being transparent to radiation in a second range of wavelengths within the first range of wavelengths for a predetermined temperature range. Radiation within the second range of wavelength is reflected by the reflective layer.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Joseph M. Ranish, Aaron M. Hunter, Blake R. Koelmel, Bruce E. Adams
  • Patent number: 8367924
    Abstract: The present invention relates to methods and apparatuses for providing a buried insulator isolation for solar cell contacts. According to certain aspects, the invention places a buried oxide under the emitter of a polysilicon emitter solar cell. The oxide provides an excellent passivation layer over most of the surface. Holes in the oxide provide contact areas, increasing the current density to enhance efficiency. The oxide isolates the contacts from the substrate, achieving the advantage of a selective emitter structure without requiring deep diffusions. The oxide further enables use of screen printing on advanced shallow emitter cells. Positioning of the grid lines close to the openings also enables use of a very thin emitter to maximize blue response.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Peter Borden, Li Xu
  • Publication number: 20130029061
    Abstract: A method and apparatus for tailoring the formation of active species using one or more electron beams to improve gap-fill during an integrated circuit formation process is disclosed herein. The energy of the electron beams may be decreased to maximize electrons leading to radicals or increased to maximize electrons leading to ions, depending on the fill application. An apparatus comprising multiple impinging jets of gas perpendicular to one or more electron beams is also disclosed.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 31, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Matthew S. Rogers
  • Publication number: 20130029499
    Abstract: The present invention generally relates to methods for thermally processing substrates. In one embodiment, a substrate having an amorphous thin film thereon is subjected to a first pulse of electromagnetic energy having a first fluence insufficient to complete thermal processing. After a predetermined amount of time, the substrate is then subjected to a second pulse of electromagnetic energy having a second fluence greater than the first fluence. The second fluence is generally sufficient to complete the thermal processing. Exposing the substrate to the lower fluence first pulse before the second pulse reduces damage to a thin film disposed on the substrate. In another embodiment, a substrate is exposed to a plurality of electromagnetic energy pulses. The plurality of electromagnetic energy pulses are spaced at increasing intervals to reduce the rate of recrystallization of a film on the substrate, thus increasing the size of the crystals formed during the recrystallization.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Aaron Muir Hunter
  • Publication number: 20130026693
    Abstract: Embodiments of the present invention provide a substrate supporting edge ring for supporting a substrate. In one embodiment, a substrate support ring is provided. The substrate support ring comprises an annular body. The annular body comprises an outer band extending radially inward from an outer annular sidewall; and a substrate supporting region extending inward from an inner portion of the outer band, wherein the annular body comprises a first material that is exposed and at least a portion of the substrate supporting region is covered with a coating comprising a second material that is different than the first material.
    Type: Application
    Filed: June 1, 2012
    Publication date: January 31, 2013
    Applicant: Applied Materials, Inc.
    Inventors: Joseph M. Ranish, Aaron Muir Hunter
  • Publication number: 20130026146
    Abstract: The present invention generally relates to methods and apparatus for thermally processing substrates. The apparatus include an energy source, a plurality of chambers, and one or more energy switches. The one or more optical switches are adapted to direct an amount of energy emitted from the energy source to one of the plurality of chambers, and then change switch positions to direct the energy to a second of the plurality of chambers at a preselected time. The plurality of chambers may each include a heated support and a plurality of lamps therein to heat a substrate. The methods generally include thermally processing a first substrate in a first chamber while preheating or aligning a second substrate in a second chamber. After the first substrate is thermally processed, the second substrate is processed in the second chamber using the same energy source as was used to process the first substrate.
    Type: Application
    Filed: July 16, 2012
    Publication date: January 31, 2013
    Applicant: Applied Materials, Inc.
    Inventor: Jacob Newman
  • Publication number: 20130025538
    Abstract: Methods and apparatus for processing a substrate are provided herein.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: RICHARD O. COLLINS, BALASUBRAMANIAN RAMACHANDRAN, ZUOMING ZHU
  • Publication number: 20130026617
    Abstract: Methods of forming a metal silicide region in an integrated circuit are provided herein. In some embodiments, a method of forming a metal silicide region in an integrated circuit includes forming a silicide-resistive region in a first region of a substrate, the substrate having the first region and a second region, wherein a mask layer is deposited atop the substrate and patterned to expose the first region; removing the mask layer after the silicide-resistive region is formed in the first region of the substrate; depositing a metal-containing layer on a first surface of the first region and a second surface of the second region; and annealing the deposited metal-containing layer to form a first metal silicide region in the second region.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: MICHAEL G. WARD, IGOR V. PEIDOUS
  • Publication number: 20130026540
    Abstract: Methods and apparatus for forming semiconductor structures are disclosed herein. In some embodiments, a semiconductor structure may include a first germanium carbon layer having a first side and an opposing second side; a germanium-containing layer directly contacting the first side of the first germanium carbon layer; and a first silicon layer directly contacting the opposing second side of the first germanium carbon layer. In some embodiments, a method of forming a semiconductor structure may include forming a first germanium carbon layer atop a first silicon layer; and forming a germanium-containing layer atop the first germanium carbon layer.
    Type: Application
    Filed: August 26, 2011
    Publication date: January 31, 2013
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ERROL ANTONIO C. SANCHEZ, YI-CHIAU HUANG
  • Patent number: 8361835
    Abstract: Embodiments disclosed herein generally relate to a process of depositing a transparent conductive oxide layer over a substrate. The transparent oxide layer is sometimes deposited onto a substrate for later use in a solar cell device. The transparent conductive oxide layer may be deposited by a “cold” sputtering process. In other words, during the sputtering process, a plasma is ignited in the processing chamber which naturally heats the substrate. No additional heat is provided to the substrate during deposition such as from the susceptor. After the transparent conductive oxide layer is deposited, the substrate may be annealed and etched, in either order, to texture the transparent conductive oxide layer. In order to tailor the shape of the texturing, different wet etch chemistries may be utilized. The different etch chemistries may be used to shape the surface of the transparent conductive oxide and the etch rate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Valery V. Komin, Hien-Minh Huu Le, David Tanner, James S. Papanu, Philip A. Greene, Suresh M. Shrauti, Roman Gouk, Steven Verhaverbeke
  • Patent number: 8360003
    Abstract: In a plasma reactor having an RF plasma source power applicator at its ceiling, an integrally formed grid liner includes a radially extending plasma confinement ring and an axially extending side wall liner. The plasma confinement ring extends radially outwardly near the plane of a workpiece support surface from a pedestal side wall, and includes an annular array of radial slots, each of the slots having a narrow width corresponding to an ion collision mean free path length of a plasma in the chamber. The side wall liner covers an interior surface of the chamber side wall and extends axially from a height near a height of said workpiece support surface to the chamber ceiling.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Nguyen, Hiroji Hanawa, Kartik Ramaswamy, Samer Banna, Anchel Sheyner, Valentin N. Todorow
  • Patent number: 8361897
    Abstract: A method for depositing at least one thin-film electrode onto a transparent conductive oxide film is provided. At first, the transparent conductive oxide film is deposited onto a substrate to be processed. Then, the substrate and the transparent conductive oxide film are subjected to a processing environment containing a processing gas acting as a donor material or an acceptor material with respect to the transparent conductive oxide film. The at least one thin-film electrode is deposited onto at least portions of the transparent conductive oxide film. A partial pressure of the processing gas acting as the donor material or the acceptor material with respect to the transparent conductive oxide film is varied while depositing the at least one thin-film electrode onto at least portions of the transparent conductive oxide film. Thus, a modified transparent conductive oxide film having reduced interface resistance and bulk resistance can be obtained.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Fabio Pieralisi
  • Patent number: 8361549
    Abstract: A method for preventing particle contamination within a processing chamber is disclosed. Preheating the substrate within the processing chamber may cause a thermophoresis effect so that particles within the chamber that are not adhered to a surface may not come to rest on the substrate. One method to increase the substrate temperature is to plasma load the substrate. Plasma loading comprises providing an inert gas plasma to the substrate to heat the substrate. Another method to increase the substrate temperature is high pressure loading the substrate. High pressure loading comprises heating the substrate while increasing the chamber pressure to between about 1 Torr and about 10 Torr. By rapidly increasing the substrate temperature within the processing chamber prior to substrate processing, particle contamination is less likely to occur.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Dong-Kil Yim, John M. White, Soo Young Choi, Han Byoul Kim, Jin Man Ha, Beom Soo Park