Abstract: Examples of the present technology include semiconductor processing methods that provide a substrate in a substrate processing region of a substrate processing chamber, where the substrate is maintained at a temperature less than or about 50° C. An inert precursor and a hydrocarbon-containing precursor may be flowed into the substrate processing region of the substrate processing chamber, where a flow rate ratio of the inert precursor to the hydrocarbon-containing precursor may be greater than or about 10:1. A plasma may be generated from the inert precursor and the hydrocarbon-containing precursor, and a carbon-containing material may be deposited from the plasma on the substrate. The carbon-containing material may include diamond-like-carbon, and may have greater than or about 60% of the carbon atoms with sp3 hybridized bonds.
Type:
Grant
Filed:
August 7, 2020
Date of Patent:
August 2, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
Abstract: The present disclosure relates to through-via structures with dielectric shielding of interconnections for advanced wafer level semiconductor packaging. The methods described herein enable the formation of high thickness dielectric shielding layers within low aspect ratio through-via structures, thus facilitating thin and small-form-factor package structures having high I/O density with improved bandwidth and power.
Type:
Grant
Filed:
November 20, 2020
Date of Patent:
August 2, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Peng Suo, Ying W. Wang, Guan Huei See, Chang Bum Yong, Arvind Sundarrajan
Abstract: A crested barrier memory and selector device may include a first electrode, a first self-rectifying, tunneling layer having a first dielectric constant, and an active, barrier layer that has a second dielectric constant and another self-rectifying, tunneling layer having a third dielectric constant. The first self-rectifying layer may be between the first electrode and the active layer. The second dielectric constant may be at least 1.5 times larger than the first dielectric constant. The device may also include a second electrode, where the active, barrier layer is between the first self-rectifying, tunneling layer and the second electrode.
Abstract: An additive manufacturing apparatus includes an environmentally sealed first chamber, a second chamber separated from the first chamber by a first valve, a platform positionable in the first chamber, a dispenser configured to deliver a plurality of successive layers of feed material onto the platform in the first chamber, at least one energy source to selectively fuse feed material in a layer on the platform in the first chamber, and an air knife assembly to direct a laminar flow of air across a layer of feed material on the platform in the first chamber. The air knife assembly includes an inlet module and an exhaust module that are movable through the first valve between the first chamber and the second chamber.
Abstract: A load port system includes an isolation compartment coupled to an equipment front end module (EFEM). Reactive gas is to be removed from the isolation compartment. The load port system further includes an elevator disposed in the isolation compartment. The elevator is coupled to an elevator arm that extends from the isolation compartment into the EFEM through an opening to raise and lower a carrier opener within the EFEM.
Type:
Grant
Filed:
November 9, 2020
Date of Patent:
August 2, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Luke W. Bonecutter, David T. Blahnik, Paul B. Reuter
Abstract: A light-emitting device includes a plurality of light-emitting diodes, a first cured composition over a first subset of the light-emitting diodes, and a second cured composition over a second subset of light-emitting diodes. The first cured composition includes a first photopolymer and a blue photoluminescent material that is an organic, organometallic, or polymeric material, embedded in the first photopolymer. The second cured composition includes a second photopolymer and a nanomaterial embedded in the second photopolymer. The nanomaterial is selected to emit red or green light in response.
Type:
Grant
Filed:
August 28, 2020
Date of Patent:
August 2, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Yingdong Luo, Lisong Xu, Sivapackia Ganapathiappan, Hou T. Ng, Byung Sung Kwak, Mingwei Zhu, Nag B. Patibandla
Abstract: Disclosed are rare earth metal containing silicate coatings, coated articles (e.g., heaters and susceptors) or bodies of articles and methods of coating such articles with a rare earth metal containing silicate coating.
Type:
Grant
Filed:
June 18, 2019
Date of Patent:
August 2, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Xiao-Ming He, Cheng-Hsuan Chou, Jennifer Y. Sun
Abstract: Methods of forming a DRAM bit line to improve line edge roughness (LER) and lower resistance are described. The method comprises implanting an inert species into a bit line metal layer having a first grain size on a substrate to form an amorphized bit line metal layer having a second grain size smaller than the first grain size. A film stack is then deposited on the amorphized bit line metal layer. The film stack and amorphized bit line metal layer are etched to form a patterned film stack on the substrate. The patterned film stack on the substrate is thermally annealed.
Type:
Application
Filed:
April 11, 2022
Publication date:
July 28, 2022
Applicant:
Applied Materials, Inc.
Inventors:
Lequn Liu, Priyadarshi Panda, Jonathan C. Shaw
Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer comprising an alloy of molybdenum (Mo) and antimony (Sb).
Abstract: Methods for gap filling features of a substrate surface are described. Each of the features extends a distance into the substrate from the substrate surface and have a bottom and at least one sidewall. The methods include depositing a non-conformal film in the feature of the substrate surface with a plurality of high-frequency ratio-frequency (HFRF) pulses. The non-conformal film has a greater thickness on the bottom of the features than on the at least one sidewall. The deposited film is substantially etched from the sidewalls of the feature. The deposition and etch processes are repeated to fill the features.
Abstract: Apparatuses and methods to provide a patterned substrate are described. A plurality of patterned and spaced first lines and carbon material lines and formed on the substrate surface by selectively depositing and etching films extending in a first direction and films extending in a second direction that crosses the first direction to pattern the underlying structures.
Type:
Application
Filed:
April 14, 2022
Publication date:
July 28, 2022
Applicant:
Applied Materials, Inc.
Inventors:
Tejinder Singh, Takehito Koshizawa, Abhijit Basu Mallick, Pramit Manna, Nancy Fung, Eswaranand Venkatasubramanian, Ho-Yung David Hwang, Samuel E. Gottheim
Abstract: Methods of producing grating materials with variable height are provided. In one example, a method may include providing a grating material atop a substrate, and positioning a shadow mask between the grating material and an ion source, wherein the shadow mask is separated from the grating material by a distance. The method may further include etching the grating material using an ion beam passing through a set of openings of the shadow mask, wherein a first depth of a first portion of the grating material is different than a second depth of a second portion of the grating material.
Type:
Application
Filed:
April 18, 2022
Publication date:
July 28, 2022
Applicant:
Applied Materials, Inc.
Inventors:
Joseph C. Olson, Morgan Evans, Thomas Soldi, Rutger Meyer Timmerman Thijssen, Maurice Emerson Peploski
Abstract: Embodiments described herein generally relate to methods for controlling a processing system. Particularly, subfab components of the processing system may be controlled based on the flow of materials into the processing system. In some embodiments, the flow of an inert gas used to dilute the effluent gases may be controlled in accordance with the flow of one or more precursor gases. Thus, the cost of running the processing system is reduced while mitigating critical EHS concerns.
Abstract: Embodiments described herein relate to methods of forming gratings with different slant angles on a substrate and forming gratings with different slant angles on successive substrates using angled etch systems. The methods include positioning portions of substrates retained on a platen in a path of an ion beam. The substrates have a grating material disposed thereon. The ion beam is configured to contact the grating material at an ion beam angle ? relative to a surface normal of the substrates and form gratings in the grating material. The substrates are rotated about an axis of the platen resulting in rotation angles ? between the ion beam and a surface normal of the gratings. The gratings have slant angles ?? relative to the surface normal of the substrates. The rotation angles ? selected by an equation ?=cos?1(tan(??)/tan(?)).
Type:
Grant
Filed:
April 17, 2019
Date of Patent:
July 26, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Rutger Meyer Timmerman Thijssen, Morgan Evans, Joseph C. Olson
Abstract: Exemplary methods of etching gallium oxide from a semiconductor substrate may include selectively etching gallium oxide relative to gallium nitride. The method may include flowing a reagent in a substrate processing region housing the semiconductor substrate. The reagent may include at least one of chloride and bromide. The method may further include contacting an exposed region of gallium oxide with the at least one of chloride and bromide from the reagent to form a gallium-containing gas. The gallium-containing gas may be removed by purging the substrate processing region with an inert gas. The method includes recessing a surface of the gallium oxide. The method may include repeated cycles to achieve a desired depth.
Type:
Grant
Filed:
September 8, 2020
Date of Patent:
July 26, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Feng Q. Liu, Lisa J. Enman, Lakmal C. Kalutarage, Mark J. Saly
Abstract: Embodiments of the present disclosure are related to systems and methods for autofocusing an imaging apparatus in real-time during substrate scanning to pattern a substrate that includes a photoresist formed over one or more patterned materials. Displays of varying sizes can be fabricated using digital photolithography systems. The digital photolithography systems discussed herein, which may be referred to as imaging systems, use one or more exposure sources, including solid state emitter devices, for operations including patterning photoresists. Signal classifiers are used to perform shape and pattern recognition to determine whether signals received during substrate scanning are from a top photoresist surface or from sub-surface layers. One or more parameters of the imaging apparatus can be adjusted or maintained based on the signal analysis.
Abstract: An RF plasma generator configured to ignite and maintain a plasma from one or more processing gases is disclosed. A switch mode power supply is configured to convert a DC voltage from a DC power source to an RF voltage. A resonance circuit is configured to deliver an amount of power to an ignited plasma from the switch mode power supply. A plasma controller is configured to operate the power supply to apply an RF voltage corresponding to the amount of power to the one or more processing gases through the resonance circuit. The RF voltage increases in amplitude and decreases in frequency until the one or more processing gasses are ignited into a plasma. Responsive to detecting ignition of the plasma, the plasma controller is further configured to continuously adjust the frequency of the switch mode power supply to deliver the amount of power to the ignited plasma. The amount of power is a substantially constant amount of power.
Type:
Grant
Filed:
June 25, 2019
Date of Patent:
July 26, 2022
Assignee:
Applied Materials, Inc.
Inventors:
Rongping Wang, Siamak Salimian, Tom K. Cho
Abstract: Chalcogen silane precursors are described. Methods for depositing a silicon nitride (SixNy) film on a substrate are described. The substrate is exposed to the chalcogen silane and a reactant to deposit the silicon nitride (SixNy) film. The exposures can be sequential or simultaneous. The chalcogen silane may be substantially free of halogen. The chalcogen may be selected from the group consisting of sulfur (S), selenium (Se), and tellurium (Te).
Type:
Application
Filed:
January 18, 2021
Publication date:
July 21, 2022
Applicants:
Applied Materials, Inc., National University of Singapore
Inventors:
Chandan Kr Barik, Michael Haverty, Muthukumar Kaliappan, Cong Trinh, Bhaskar Jyoti Bhuyan, John Sudijono, Anil Kumar Tummanapelli, Richard Ming Wah Wong, Yingqian Chen
Abstract: A contact stack of a semiconductor device comprises: a source/drain region; a metal silicide layer above the source/drain region; a metal cap layer directly on the metal silicide layer; and a conductor on the metal cap layer. A method comprises: depositing a metal silicide layer in a feature of a substrate; in the absence of an air break after the depositing of the metal silicide layer, preparing a metal cap layer directly on the metal silicide layer; and depositing a conductor on the metal cap layer.
Type:
Application
Filed:
January 19, 2021
Publication date:
July 21, 2022
Applicant:
Applied Materials, Inc.
Inventors:
Bencherki Mebarki, Joung Joo Lee, Wenting Hou, Takashi Kuratomi, Avgerinos V. Gelatos, Jianxin Lei, Liqi Wu, Raymond Hoiman Hung, Tae Hong Ha, Xianmin Tang