Patents Assigned to Applied Materials
  • Publication number: 20090034147
    Abstract: A method and apparatus for providing a fluid distribution element for an electrostatic chuck that reduces plasma formation and arcing within heat transfer fluid passages. One embodiment comprises a plate and a dielectric component, where the dielectric component is inserted into the plate. The plate is adapted to be positioned within a channel to define a plenum, wherein the dielectric component provides at least a portion of a fluid passage coupled to the plenum. A porous dielectric layer, formed upon the dielectric component, provides at least another portion of a fluid passage coupled to the plenum. In other embodiments, the fluid distribution element comprises various arrangements of components to define a fluid passage that does not provide a line-of-sight path from the support surface for a substrate to a plenum.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 5, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Kadthala Ramaya Narendrnath, Xinglong Chen, Sudhir Gondhalekar, Dmitry Lubomirsky, Muhammad Rasheed, Tony Kaushal
  • Publication number: 20090035918
    Abstract: Methods of forming a dielectric layer where the tensile stress of the layer is increased by a plasma treatment at an elevated position are described. In one embodiment, oxide and nitride layers are deposited on a substrate and patterned to form an opening. A trench is etched into the substrate. The substrate is transferred into a chamber suitable for dielectric deposition. A dielectric layer is deposited over the substrate, filling the trench and covering mesa regions adjacent to the trench. The substrate is raised to an elevated position above the substrate support and exposed to a plasma which increases the tensile stress of the substrate. The substrate is removed from the dielectric deposition chamber, and portions of the dielectric layer are removed so that the dielectric layer is even with the topmost portion of the nitride layer. The nitride and pad oxide layers are removed to form the STI structure.
    Type: Application
    Filed: October 15, 2008
    Publication date: February 5, 2009
    Applicant: Applies Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7484473
    Abstract: A gas inlet manifold for a plasma chamber having a perforated gas distribution plate suspended by a side wall comprising one or more sheets. The sheets preferably provide flexibility to alleviate stress in the gas distribution plate due to thermal expansion and contraction. In another aspect, the side wall provides thermal isolation between the gas distribution plate and other components of the chamber.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: February 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ernst Keller, Quanyuan Shang
  • Patent number: 7486814
    Abstract: A method and apparatus for inspecting a reticle measures line widths using an inspection tool that images the reticle and compares the image with a design database to detect errors in real time. The differences between the line widths of patterns on the reticle and the design database are stored during the inspection procedure. The difference (or “bias”) information is then processed off-line to create a map of all the local line-width deviation values (i.e., bias) of every feature on the reticle. The resultant local bias map can be used as a feedback mechanism to improve the reticle manufacturing process, as a “go/no go” criteria for the validity of the reticle, and as a standard report shipped together with the mask to the wafer fabrication facility, where it can be used as a yield-enhancing tool.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: February 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yair Eran, Gad Greenberg, Ami Sade, Shirley Hemar
  • Patent number: 7485556
    Abstract: A metal silicide layer is formed on silicon-containing features of a substrate in a chamber. A metal film is sputter deposited on the substrate and a portion of the sputter deposited metal film is silicided. In the process, sputtering gas is energized by applying an electrical bias potential across the metal sputtering target and the substrate support to sputter deposit metal from a target onto the substrate. At least a portion of the deposited sputtered metal is silicided by heating the substrate to a silicidation temperature exceeding about 200° C. to form a combined sputtered metal and metal silicide layer on the substrate. The remaining sputtered metal can be silicided by maintaining the substrate at the silicidation temperature to form the metal silicide layer.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: February 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Jeong Soo Byun, Jianxin Lei, Lisa Yang, Hien-Minh Huu Le
  • Publication number: 20090025636
    Abstract: A process kit cover for chemical vapor deposition processes is disclosed according to one embodiment of the invention. The process kit cover may include a protrusion from the top surface of the process kit cover. The protrusion is adjacent to a wafer facing surface. The protrusion decreases oxide buildup on the process kit cover and the wafer facing surface during repeated deposition processes. The process kit cover may also be in minimal thermal contact at the interface with a lower support structure, such as a ceramic collar or pedestal, according to another embodiment of the invention. Minimal thermal contact may be achieved by placing an insulator between the process kit cover and the lower support structure or by creating a gap or gaps between the process kit cover and the lower support structure. Ambient atmosphere may provide thermal insulating within the gap or gaps.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Applicant: Applied Materials, Inc.
    Inventor: MUHAMMAD RASHEED
  • Patent number: 7482178
    Abstract: A method and apparatus for monitoring the stability of a substrate processing chamber and for adjusting the process recipe. Thickness and CD measurement data are collected before wafer processing and after wafer processing by an integrated or an in-situ metrology tool to monitor process chamber stability and to adjust the process recipe. The real time chamber stability monitoring enabled by the integrated metrology tool reduces the risk and cost of wafer mis-processing. The real time process recipe adjustment allows tightening of the process recipe. Process development cycle can also be reduced by the method and apparatus.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 27, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David S. L. Mui, Wei Liu, Hiroki Sasano
  • Patent number: 7483196
    Abstract: A multiple beam generator for use in a scanning system, wherein the generator includes an acousto-optic deflector (AOD) which during use receives a laser beam and generates a deflected beam, the deflection of which is determined by an AOD control signal; a diffractive element which generates an array of input beams from the deflected beam; and a control circuit which during operation generates the AOD control signal and varies a characteristic of the first control signal to account for errors in the scanning system.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: January 27, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Paul C. Allen, Alan J. Wickstrom, Bryan C. Bolt
  • Publication number: 20090023294
    Abstract: A method for etching wafers using advanced patterning film (APF) to reduce bowing and improve bottom-to-top ratios includes providing a wafer having an APF layer into a processing chamber, wherein the processing chamber is configured with a power source operating at about 162 MHz, supplying a process gas into the chamber, applying a source power using the 162 MHz power source, and applying a bias power to the wafer. The process gas comprises hydrogen gas (H2), nitrogen gas (N2), and carbon monoxide gas (CO). The ratio of H2:N2 is about 1:1. Additionally, the wafer temperature is adjusted to improve the etching characteristics.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: Applied Materials, Inc.
    Inventors: JUDY WANG, Shing-Li Sung, Shawming Ma
  • Publication number: 20090020416
    Abstract: A sputter coating device comprises a vacuum coating chamber, substrates arranged within the coating chamber, a cylindrical hollow cathode including a rotatable target rotating around a central axis A, and a magnet assembly which is arranged within the hollow cathode such that confining plasma zones are generated in an area above the surface of the target. At least one substrate is to be coated. The substrate has an OLED layer deposited on the substrate surface. An intermediate area is arranged between the surface of the target and a shield that shields particles sputtered from the surface of the target that move in a direction toward the shield. On each side of the shield, passages are provided between the intermediate area and coating area. Through the passage, only sputtered particles that have been scattered in the intermediate area may enter the coating area via the passage, and impinge the OLED layer.
    Type: Application
    Filed: June 25, 2008
    Publication date: January 22, 2009
    Applicant: Applied Materials, Inc.
    Inventors: James Scholhammer, Uwe Hoffmann, Jose Manuel Dieguez-Campo
  • Patent number: 7479456
    Abstract: A method of electrostatically chucking a wafer while removing heat from the wafer in a plasma reactor includes providing a polished generally continuous surface on a puck, placing the wafer on the polished surface of the puck and cooling the puck. A chucking voltage is applied to an electrode within the puck to electrostatically pull the wafer onto the surface of the puck with sufficient force to attain a selected heat transfer coefficient between contacting surfaces of the puck and wafer.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Douglas A. Buchberger, Jr., Daniel J. Hoffman, Kartik Ramaswamy, Andrew Nguyen, Hiorji Hanawa, Kenneth S. Collins, Amir Al-Bayati
  • Patent number: 7480129
    Abstract: A detachable electrostatic chuck can be attached to a pedestal in a process chamber. The electrostatic chuck has an electrostatic puck comprising a dielectric covering at least one electrode and a frontside surface to receive a substrate. A backside surface of the chuck has a central protrusion that can be a D-shaped mesa to facilitate alignment with a mating cavity in the pedestal. The protrusion can also have asymmetrically offset apertures, which further assist alignment, and also serve to receive electrode terminal posts and a gas tube. A heat transfer plate having an embedded heat transfer fluid channel is spring loaded on the pedestal to press against the chuck for good heat transfer.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Karl Brown, Semyon Sherstinsky, Wei W. Wang, Cheng-Hsiung Tsai, Vineet Mehta, Allen Lau, Steve Sansoni
  • Patent number: 7479644
    Abstract: This invention relates to a method of measuring a property of an ion beam, for example an ion beam current profile or the emittance of an ion beam. A Faraday array comprising an array of ion beam current sensors is employed. The array can provide an ion beam current profile at the plane of the array. The Faraday array is also used in conjunction with an occluding element that may be moved through the ion beam upstream of the Faraday array, there obscuring varying portions of the ion beam from the Faraday array. Suitable manipulation of the signals from the Faraday allows the ion beam current profile to be determined for the plane of the occluding element, and also for the emittance of the ion beam at the plane of the occluding element to be determined.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Geoffrey Ryding, Takao Sakase, Marvin Farley, Theodore Smick
  • Patent number: 7479304
    Abstract: Disclosed herein is a gas distribution plate for use in a gas distribution assembly for a processing chamber, where the gas distribution plate is fabricated from a solid yttrium oxide-comprising substrate, which may also include aluminum oxide. The gas distribution plate includes a plurality of through-holes, which are typically crescent-shaped. Through-holes which have been formed in the solid yttrium oxide-comprising substrate by ultrasonic drilling perform particularly well. The solid yttrium oxide-comprising substrate typically comprises at least 99.9% yttrium oxide, and has a density of at least 4.92 g/cm3, a water absorbency of about 0.02% or less, and an average grain size within the range of about 10 ?m to about 25 ?m. Also disclosed herein are methods for fabricating and cleaning the yttrium oxide-comprising gas distribution plate.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, James Dempster, Li Xu, Thanh N. Pham
  • Patent number: 7479712
    Abstract: The invention relates to a configuration for several consumers of electric energy, with these consumers having either the same electric power or different electric powers. Since, as a rule, not all consumers need to be supplied simultaneously with electric energy, for example if, due to maintenance work, some are not in operation, a modular energy supply system is provided, which is comprised of several interconnectable modules. This makes it possible for each consumer to be supplied from small units with the power it requires.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: January 20, 2009
    Assignee: Applied Materials GmbH & Co. KG.
    Inventors: Holger Richert, Wolfgang Morbe
  • Patent number: 7479464
    Abstract: Embodiments of the present invention provide a method for low temperature aerosol deposition of a plasma resistive layer on semiconductor chamber components/parts. In one embodiment, the method for low temperature aerosol deposition includes forming an aerosol of fine particles in an aerosol generator, dispensing the aerosol from the aerosol generator into a processing chamber toward a surface of a substrate, maintaining the substrate temperature at between about 0 degrees Celsius and 50 degrees Celsius, and depositing a layer from material in the aerosol on the substrate surface.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: January 20, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Elmira Ryabova, Senh Thach, Xi Zhu, Semyon L. Kats
  • Publication number: 20090017206
    Abstract: A substrate coating system is provided which includes a substrate coating chamber; a gas box connected to the coating chamber and adapted to provide reagent gases to the coating chamber; and a reagent reclaim system connected to the substrate coating chamber and the gas box, wherein the reagent reclaim system includes a wet scrubber connected to the coating chamber; a polisher connected to the wet scrubber; and a dryer connected to the polisher and the gas box.
    Type: Application
    Filed: June 16, 2008
    Publication date: January 15, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Daniel O. Clark, Robert Z. Bachrach, Mehran Moalem, Jay J. Jung
  • Publication number: 20090014065
    Abstract: The present invention concerns a method for the generation of a transparent conductive oxide coating (TCO layer), in particular a transparent conductive oxide coating as a transparent contact for thin section solar cells. The TCO layer consists at least of a first layer of high conductivity and a second layer of low conductivity, with the second layer generated by DC sputtering of at least one target, which contains zinc oxide and additionally aluminum, and the process atmosphere contains oxygen. Further, the present invention relates to a TCO layer as well as thin section solar cells on CIGS and CdTe basis.
    Type: Application
    Filed: July 11, 2008
    Publication date: January 15, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Joachim Mueller, Jian Liu, Stephan Wieder
  • Publication number: 20090015830
    Abstract: Methods and devices are provided for profiling a beam of light that includes a wavelength ?. The beam of light is received. Secondary light is generated at a wavelength ?? different from wavelength ? by fluorescing a material with the received beam of light. The secondary light is separated from the received beam of light. The separated secondary light is optically directed to a sensor.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 15, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Timothy N. Thomas, Bruce Adams, Dean C. Jennings
  • Patent number: 7476289
    Abstract: The present invention includes a method and apparatus for bonding a sputtering target to a backing plate. In one embodiment, a sputtering target is vacuum bonded to a backing plate using an elastomeric adhesive and a metal mesh. The vacuum pulls the backing plate and sputtering target together while also removing air pockets that inevitably form within the adhesive during adhesive deposition and backing plate attachment.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: January 13, 2009
    Assignee: Applied Materials, Inc.
    Inventor: John M. White