Patents Assigned to Applied Materials
  • Patent number: 7467919
    Abstract: A wafer carrier opener is provided. The wafer carrier opener may eliminate the use of two separate actuators by using a four-bar linkage mechanism. The wafer carrier opener includes a wafer carrier door receiver, a horizontally stationary member, and a link coupled between the wafer carrier door receiver and the horizontally stationary member so as to allow horizontal movement of the wafer carrier door receiver.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: December 23, 2008
    Assignee: Applied Materials, Inc.
    Inventor: William Tyler Weaver
  • Patent number: 7468507
    Abstract: A method for scanning a surface, consisting of focusing an array of optical beams using optics having an axis, so as to illuminate a region of the surface intercepted by the axis, such that each optical beam illuminates a portion of a respective sub-region within the region. The method further includes moving at least one of the array and the surface so as to cause a translation of the surface relative to the axis in a first direction. During the translation in the first direction, each of the optical beams is scanned over the respective sub-region in a second direction, which is different from the first direction.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: December 23, 2008
    Assignee: Applied Materials, Israel, Ltd.
    Inventors: Steven R. Rogers, Nissim Elmaliach, Emanuel Elyasef, Alon Litman, Ron Naftali, Doron Meshulach
  • Publication number: 20080311753
    Abstract: A method of forming and removing a sacrificial oxide layer is described. The method includes forming a step on a substrate, where the step has a top and sidewalls. The method may also include forming the sacrificial oxide layer around the step by chemical vapor deposition of molecular oxygen and TEOS, where the oxide layer is formed on the top and sidewalls of the step. The method may also include removing a top portion of the oxide layer and the step; removing a portion of the substrate exposed by the removal of the step to form a etched substrate; and removing the entire sacrificial oxide layer from the etched substrate.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Yi Zheng, Sasha J. Kweskin, Kedar Sapre, Nitin K. Ingle, Zheng Yuan
  • Publication number: 20080310975
    Abstract: The present invention provides systems, methods, and apparatus for abating effluent from an electronic device manufacturing system using cogeneration. The invention includes a pump adapted to couple to a processing chamber and adapted to draw effluent from the processing chamber; a reaction chamber coupled to the pump and adapted to receive the effluent from the pump; and a turbine coupled to the reaction chamber and adapted to be driven by combustion gases from the reaction chamber. The turbine is adapted to generate power which is applied to operate the pump. Numerous additional aspects are disclosed.
    Type: Application
    Filed: May 25, 2008
    Publication date: December 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Phil Chandler, Daniel O. Clark, Robbert M. Vermeulen, James L. Smith
  • Publication number: 20080311754
    Abstract: A method of improving pattern loading in a deposition of a silicon oxide film is described. The method may include providing a deposition substrate to a deposition chamber, and adjusting a temperature of the deposition substrate to about 250° C. to about 325° C. An ozone containing gas may be introduced to the deposition chamber at a first flow rate of about 1.5 slm to about 3 slm, where the ozone concentration in the gas is about 6% to about 12%, by wt. TEOS may also be introduced to the deposition chamber at a second flow rate of about 2500 mgm to about 4500 mgm. The deposition rate of the silicon oxide film is controlled by a reaction rate of a reaction of the ozone and TEOS at a deposition surface of the substrate.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: BALAJI CHANDRASEKARAN, Douglas E. Manning, Nitin K. Ingle, Rong Pan, Zheng Yuan, Sidharth Bhatia
  • Patent number: 7465591
    Abstract: A structure having a number of traces passing through a region is evaluated by using a beam of electromagnetic radiation to illuminate the region, and generating an electrical signal that indicates an attribute of a portion (also called “reflected portion”) of the beam reflected from the region. The just-described acts of “illuminating” and “generating” are repeated in another region, followed by a comparison of the generated signals to identify variation of a property between the two regions. Such measurements can identify variations in material properties (or dimensions) between different regions in a single semiconductor wafer of the type used in fabrication of integrated circuit dice, or even between multiple such wafers. In one embodiment, the traces are each substantially parallel to and adjacent to the other, and the beam has wavelength greater than or equal to a pitch between at least two of the traces. In one implementation the beam is polarized, and can be used in several ways, including, e.g.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Peter G Borden, Jiping Li
  • Patent number: 7464717
    Abstract: The present invention is a method and apparatus for cleaning a chemical vapor deposition (CVD) chamber using cleaning gas energized to a plasma in a gas mixing volume separated by an electrode from a reaction volume of the chamber. In one embodiment, a source of RF power is coupled to a lid of the chamber, while a switch is used to couple a showerhead to ground terminals or the source of RF power.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Maosheng Zhao, Juan Carlos Rocha-Alvarez, Inna Shmurun, Soova Sen, Mao D. Lim, Shankar Venkataraman, Ju-Hyung Lee
  • Patent number: 7465666
    Abstract: In one embodiment, a method for forming a tungsten material on a substrate surface is provide which includes positioning a substrate within a deposition chamber, heating the substrate to a deposition temperature, and exposing the substrate sequentially to diborane and a tungsten precursor gas to form a tungsten nucleation layer on the substrate during an atomic layer deposition (ALD) process. The method further provides exposing the substrate to a deposition gas comprising hydrogen gas and the tungsten precursor gas to form a tungsten bulk layer over the tungsten nucleation layer during a chemical vapor deposition (CVD) process. Examples are provided which include ALD and CVD processes that may be conducted in the same deposition chamber or in different deposition chambers.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Moris Kori, Alfred W. Mak, Jeong Soo Byun, Lawrence Chung-Lai Lei, Hua Chung, Ashok Sinha, Ming Xi
  • Patent number: 7465358
    Abstract: Embodiments of the invention generally provide a fluid processing chamber, sensors and a controller and method for using the same. The fluid processing chamber includes an inlet region, a processing region and an outlet region. The inlet region generally contains one or more sensors and an external controller to monitor the characteristics of the processing fluid at the inlet to the processing region. The outlet region generally contains one or more sensors and an external controller to monitor the characteristics of the processing fluid leaving the processing region of the chamber. In one embodiment the processing region contains one or more sensors and an external controller to monitor the characteristics of the processing fluid in the processing region. The sensors may include, for example, an ORP probe, a temperature sensor, a conductivity sensor, a dissolved hydrogen sensor, a dissolved oxygen sensor, and a pH sensor.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Timothy W. Weidman, Dmitry Lubomirsky
  • Patent number: 7465659
    Abstract: Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kang Sub Yim, Melissa M. Tam, Dian Sugiarto, Chi-I Lang, Peter Wai-Man Lee, Li-Qun Xia
  • Patent number: 7465478
    Abstract: A method of processing a workpiece includes placing the workpiece on a workpiece support pedestal in a main chamber with a gas distribution showerhead, introducing a process gas into a remote plasma source chamber and generating a plasma in the remote plasma source chamber, transporting plasma-generated species from the remote plasma source chamber to the gas distribution showerhead so as to distribute the plasma-generated species into the main chamber through the gas distribution showerhead, and applying plasma RF power into the main chamber.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo
  • Patent number: 7465669
    Abstract: Embodiments of methods for fabricating a silicon nitride stack on a semiconductor substrate are provided herein. In one embodiment, a method for fabricating a silicon nitride stack on a semiconductor substrate includes depositing a base layer including silicon nitride on the substrate using a first set of process conditions that selectively control the stress of the base layer; and depositing an upper layer including silicon nitride using a second set of process conditions that selectively control at least one of an oxidation resistance and a refractive index of the upper layer.
    Type: Grant
    Filed: November 12, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: R. Suryanarayanan Iyer, Sanjeev Tandon, Kangzhan Zhang, Rubi Lapena, Yuji Maeda
  • Patent number: 7465680
    Abstract: A plasma treatment process for increasing the tensile stress of a silicon wafer is described. Following deposition of a dielectric layer on a substrate, the substrate is lifted to an elevated position above the substrate receiving surface and exposed to a plasma treatment process which treats both the top and bottom surface of the wafer and increases the tensile stress of the deposited layer. Another embodiment of the invention involves biasing of the substrate prior to plasma treatment to bombard the wafer with plasma ions and raise the temperature of the substrate. In another embodiment of the invention, a two-step plasma treatment process can be used where the substrate is first exposed to a plasma at a processing position directly after deposition, and then raised to an elevated position where both the top and bottom of the wafer are exposed to the plasma.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Xiaolin Chen, Srinivas D. Nemani, DongQing Li, Jeffrey C. Munro, Marlon E. Menezes
  • Patent number: 7465665
    Abstract: In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten-containing layer by sequentially exposing a substrate to a processing gas and a tungsten-containing gas during an atomic layer deposition process, wherein the processing gas comprises a boron-containing gas and a nitrogen-containing gas, and forming a tungsten bulk layer over the tungsten-containing layer by exposing the substrate to a deposition gas comprising the tungsten-containing gas and a reactive precursor gas during a chemical vapor deposition process. In one example, the tungsten-containing layer and the tungsten bulk layer are deposited within the same processing chamber.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Ashok Sinha, Moris Kori, Alfred W. Mak, Xinliang Lu, Ken Kaung Lai, Karl A. Littau
  • Patent number: 7465357
    Abstract: The present invention is a method and apparatus for cleaning a chemical vapor deposition (CVD) chamber using cleaning gas energized to a plasma in a gas mixing volume separated by an electrode from a reaction volume of the chamber. In one embodiment, a source of RF power is coupled to a lid of the chamber, while a switch is used to couple a showerhead to ground terminals or the source of RF power.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Maosheng Zhao, Juan Carlos Rocha-Alvarez, Inna Shmurun, Soova Sen, Mao D. Lim, Shankar Venkataraman, Ju-Hyung Lee
  • Publication number: 20080302653
    Abstract: The present invention relates to a method for producing an anti-reflection and/or passivation coating for solar cells. The method may include the steps of providing a silicon wafer in a deposition chamber, pre-heating said silicon wafer to a temperature above 400° C. and deposition of a hydrogen containing anti-reflection and/or passivation coating by a sputter process. A coating apparatus is also provided for producing solar cells, especially anti-reflection and/or passivation coatings on Si wafers, comprising a first vacuum chamber, a second vacuum chamber and conveying means for transporting a substrate through said first and second vacuum chambers. The first vacuum chamber comprising at least one infrared radiation heater with a heater filament that has a temperature between 1800° C. and 3000° C. The second vacuum chamber comprising sputter means for vaporization of a target as well as a gas inlet for introducing a reactive gas including hydrogen.
    Type: Application
    Filed: March 11, 2008
    Publication date: December 11, 2008
    Applicant: Applied Materials Inc.
    Inventors: Roland Trassl, Sven Schramm, Thomas Hegemann
  • Patent number: 7463351
    Abstract: An optical system for detecting defects on a wafer that includes a device for producing a beam and directing the beam onto the wafer surface, producing an illuminated spot on the wafer's surface. The system further includes a detector detecting light, and a mirrored assembly having together with the detector an axis of symmetry about a line perpendicular to the wafer surface. The assembly is configured to receive scattered light from the surface, where the scattered light including a first scattered light part being scattered from the pattern. The assembly is further configured to reflect and focus rotationally symmetrically about the axis of symmetry the scattered light to the detector. The system further includes a device operating with the detector for facilitating detection of a scattered light other than the specified scattered light due to pattern.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Gilad Almogy, Ron Naftali, Avishay Guetta, Doron Shoham
  • Patent number: 7463352
    Abstract: A method and apparatus for reducing speckle during inspection of articles used in the manufacture of semiconductor devices, including wafers, masks, photomasks, and reticles. The coherence of a light beam output by a coherent light source, such as a pulsed laser, is reduced by disposing elements in a light path. Examples of such elements include optical fiber bundles; optical light guides; optical gratings; an integrating sphere; and an acousto-optic modulator. These various elements may be combined as desired, such that light beams output by the element combinations have optical path length differences that are greater than a coherence length of the light beam output by the coherent light source.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Avner Karpol, Silviu Reinhorn, Emanuel Elysaf, Shimon Yalov, Boaz Kenan
  • Patent number: 7461794
    Abstract: A method and apparatus for regulating the temperature of substrates positioned within a chamber are provided. In one embodiment, a substrate support pin is provided that includes a body having a substrate support region defined at a first end and a mounting region defined at a second end of the body. A mounting feature is formed at the mounting region and is adapted to couple the body to a vacuum chamber body. A passage extends from the mounting region to the support region. An outlet formed through the body and orientated at an angle greater than zero relative to a centerline of the body is p provided to deliver fluids flowing through the passage out the first end of the body. In another embodiment, a chamber includes a pin configured to provide a temperature controlled fluid to an underside of a substrate supported on the pin.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: December 9, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hien-Minh Huu Le, Michael T. Starr
  • Publication number: 20080299775
    Abstract: Methods are disclosed for depositing a silicon oxide film on a substrate disposed in a substrate processing chamber. The substrate has a gap formed between adjacent raised surfaces. A silicon-containing gas, an oxygen-containing gas, and a fluent gas are flowed into the substrate processing chamber. A high-density plasma is formed from the silicon-containing gas, the oxygen-containing gas, and the fluent gas. A first portion of the silicon oxide film is deposited using the high-density plasma at a deposition rate between 900 and 6000 ?/min and with a deposition/sputter ratio greater than 30. The deposition/sputter ratio is defined as a ratio of a net deposition rate and a blanket sputtering rate to the blanket sputtering rate. Thereafter, a portion of the deposited first portion of the silicon oxide film is etched. A second portion of the silicon oxide film is deposited over the etched portion of the silicon oxide film.
    Type: Application
    Filed: June 4, 2007
    Publication date: December 4, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Anchuan Wang, Young S. Lee, Manoj Vellaikal, Jason Thomas Bloking, Jin Ho Jeon, Hemant P. Mungekar