Patents Assigned to Arete? Associates
  • Patent number: 9304305
    Abstract: Plural image planes are illuminated through a single image-collecting objective system. The field of view or magnification (or both), is allocated dynamically among the plural planes. Preferably the planes include two detector planes—one corresponding to a wide field of view (FOV) and the other to a steerable narrow one. Allocation is performed by a beam splitter in combination with a steering mirror, or steering-mirror array, that steers both fields together. The splitter isolates radiation corresponding to the narrow FOV from radiation corresponding to the wide FOV. In method forms of the invention, an electrooptical observation system produces simultaneous plural images for a region of interest. The system displays simultaneous images having respective plural resolutions. In operation a first, relatively wider FOV continuously covers a region of interest; while the second is narrower and has finer resolution than the first.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: April 5, 2016
    Assignee: Arete Associates
    Inventors: Andrew E. Paul, David M. Kane
  • Publication number: 20160065915
    Abstract: Embodiments herein provide for imaging objects. In one embodiment, a spectral imaging system includes an optical element configured to receive electromagnetic energy of a two-dimensional scene and a filter configured to provide a plurality of spectral filter profiles. The filter also transmits multiple spectral wavebands of the electromagnetic energy substantially simultaneously through at least one of the spectral profiles. The spectral imaging system also includes a detector configured to measure intensities of the multiple spectral wavebands, and a processor configured to generate a spectral image of the scene based on the measured intensities.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 3, 2016
    Applicant: ARETE ASSOCIATES
    Inventors: Randall Potter, Brian David Clader
  • Patent number: 9225143
    Abstract: A compact laser is provided for in accordance with an exemplary embodiment in the present disclosure includes a compact resonator structure using a non-planar geometry of bulk components. The laser includes a preferred rotational direction of lasing modes and employs bulk components for establishing the preferred rotational direction of lasing modes within resonator. In some embodiments, the preferred rotational direction of lasing modes is established using a reflective element that is outside the resonator structure. In some embodiments, the reflective element induces polarization shifts in the reflected light that are compensated for by a wave plate, which may be outside the resonator structure.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: December 29, 2015
    Assignee: Arete Associates
    Inventor: James Thomas Murray
  • Patent number: 9074882
    Abstract: A light beam is detected/localized by multisector detector—quad-cell, or 5+ sectors handling plural beams. Preferences: Beams focus to diffraction limit on the detector, which reveals origin direction by null-balance—shifting spots to a central sector junction, and measuring shifts to reach there. One or more MEMS reflectors, and control system with programmed processor(s), sequence the spot toward center: following a normal to an intersector boundary; then along the boundary. One afocal optic amplifies MEMS deflections; another sends beams to imaging optics. After it's known which sector received a spot, and the beam shifts, source direction is reported. The system can respond toward that (or a related) direction. It can illuminate objects, generating beams reflectively. Optics define an FOR in which to search; other optics define an FOV (narrower), for imaging spots onto the detector. The FOR:FOV angular ratio is on order of ten—roughly 180:20°, or 120:10°.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 7, 2015
    Assignee: Arete Associates
    Inventors: David M. Kane, Philip Sklwyn
  • Publication number: 20150153453
    Abstract: An apparatus aspect of the disclosure includes a lidar transmitter emitting laser beams, and scan mirrors (or assemblies) angularly adjustable to deflect the beams in orthogonal directions. In one aspect, afocal optics magnify deflection, a transmitter aperture transmits the beam, and a lidar receiver doesn't share the transmitter aperture. In another aspect, auxiliary optics calibrate the deflection. A method aspect of the disclosure includes noticing and responding to a remote source, using a local laser, adjustable scan mirror or assembly, afocal deflection magnifier, transmission aperture and separate receiver. Method steps described include operating the receiver to notice and determine the location of the remote source, and controlling the transmitter to direct laser light back toward that location.
    Type: Application
    Filed: January 1, 2015
    Publication date: June 4, 2015
    Applicant: Arete Associates
    Inventors: David M. Kane, Jeff T. Daiker, James T. Murray
  • Patent number: 9041898
    Abstract: Simultaneous movies of plural portions of a scene are acquired and shown, using one imager with electrooptical directing device to acquire, stepwise, an interleaved (e. g. alternating) sequence of subscene images. Apparatus is ideally in a vehicle: airborne or unmanned, or both. The invention records and transmits (via one data link, with no needed parallel path) the sequence as one image series; best sorts the received sequence into noninterleaved sequences, a separate sequence for each subscene; and shows these as movies. Alternatively, scene portions form a mosaic. Including gyro operation and pointing, the device best gets a new image roughly each 5 to 40 msec or less; or excluding gyros and pointing, 5 to 40 msec by FSM, 1 to 5 by MEMS, 1 to 5 (or 10) by LC, 1 by 2-axis nongimbal scanner and 0.1 to 0.2 by digigimbal. Subscene direction and focal changes best synchronize with frame reception. FSMs best have refractory bearings and electromagnetic pointing.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: May 26, 2015
    Assignee: Arete Associates
    Inventors: Tom Reilly, Paul Eason, David Kane, Tony Pittner, Kelly Hillman, Christopher Hornberg, John Hunt, Andrew E. Paul, Philip A. Selwyn
  • Patent number: 8958057
    Abstract: Separate reception/transmission apertures enhance pointing: reception is more efficient than transmission (kept smaller for MEMS steering). Apparatus aspects of the invention include lidar transmitters emitting laser beams, and scan mirrors (or assemblies) angularly adjustable to deflect the beams in orthogonal directions. In one aspect, afocal optics magnify deflection; a transmitter aperture transmits the beam; a lidar receiver doesn't share the transmitter aperture. In another aspect, auxiliary optics calibrate the deflection. A method aspect of the invention notices and responds to a remote source—using a similar local laser, adjustable scan mirror or assembly, afocal deflection magnifier, transmission aperture and separate receiver. Method steps include operating the receiver to notice and determine location of the remote source; and controlling the transmitter to direct laser light back toward that location.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: February 17, 2015
    Assignee: Arete Associates
    Inventors: David M. Kane, Jeff T. Daiker, James T. Murray
  • Patent number: 8946606
    Abstract: Apparatus/method estimate LOS rotation, to track, approach, pursue, intercept or avoid objects. Vehicle-fixed imagers approach/recede-from objects, recording image series with background. Computations, from images exclusively, estimate rotation vs. the vehicle, applying the estimate. Preferably, recording/estimating provide proportional navigation; scan mirrors extend strapdown-sensor FOR; applying includes measuring “range rate over range”, exclusively from interimage optical flow, using results to optimize proportional-navigation loop gain; estimating includes evaluating interframe optical flow, preregistering roughly as first approximation, selecting sequence anchor points, and applying a second, finer technique developing output registration that's a coordinate translation, aligning inertial surroundings. The approximation operates optical flow with efficient embedded registration/mapping, applying a homography matrix to nearby imagery.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Arete Associates
    Inventors: John Charles Dennison, Clayton Houston Davis, Brian Edward Frazier
  • Patent number: 8752969
    Abstract: The mirror has a base, inner stage, reflector, controller, and mechanical subsystems pivotally supporting stage and reflector: subsystem #1, the stage (about one rotation axis, relative to the base); subsystem #2, the reflector (about another axis, relative to the stage). Stage and reflector each rotate on respective jewel, ceramic or other refractory bearings. Controller establishes stage/base and reflector/stage angles. Subsystems include respective bearings. The method includes (1) using the two-axis mechanism to receive, and measure an incident angle of, incident rays from an external object; (2) then using that mechanism to direct a radiation beam from a laser source toward the external object, responsive to incident rays. Optionally step (1) operates the mirror at peak acceleration, or minimum response time, as function of mirror thickness; and provides two- to three-millimeter mirror thickness. Optionally step (2) directs the beam to disrupt object function or impair object structure.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 17, 2014
    Assignee: Arete Associates
    Inventors: David M. Kane, Kelly Hillman, Christopher Hornberg, John Hunt, Andrew E. Paul
  • Patent number: 8686326
    Abstract: In certain aspects, this invention is a “control system” that detects and minimizes (or otherwise optimizes) an angle between vehicle centerline (or other reference axis) and vehicle velocity vector—as for JDAM penetration. Preferably detection is exclusively by optical flow (which herein encompasses sonic and other imaging), without data influence by navigation. In other aspects, the invention is a “guidance system”, with optical-flow subsystem to detect an angle between the vehicle velocity vector and line of sight to a destination—either a desired or an undesired destination. Here, vehicle trajectory is adjusted in response to detected angle, for optimum angle, e.g. to either home in on a desired destination or avoid an undesired destination (or rendezvous), and follow a path that's ideal for the particular mission—preferably by controlling an autopilot or applying information from navigation.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: April 1, 2014
    Assignee: Arete Associates
    Inventors: John C. Dennison, David C. Campion
  • Patent number: 8593338
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: November 26, 2013
    Assignee: Areté Associates
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Patent number: 8473262
    Abstract: Techniques and apparatus inhibit, limit, or remove biofouling and certain inorganic accumulations, to increase the longevity of accurate in-situ oceanographic and other underwater measurements and transducing processes. The invention deters formation of an initial bacterial layer and other precipitation, without harming the environment. The invention integrates an ultrasonic source into a sensor or other device, or its supporting structures. The ultrasonic source vibrates one or more critical surfaces of the device at a frequency and amplitude that dislodge early accumulations, thus preventing the rest of the fouling sequence. The ultrasonic driver is activated for short periods and low duty cycles, and in some cases preferably while the device is not operating.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: June 25, 2013
    Assignee: Areté Associates
    Inventors: Guy J. Farruggia, Allan B. Fraser, John K. Hudak
  • Publication number: 20130147658
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Application
    Filed: January 17, 2013
    Publication date: June 13, 2013
    Applicant: ARETE ASSOCIATES
    Inventor: ARETE ASSOCIATES
  • Patent number: 8378878
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted wi th an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Areté Associates
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Patent number: 8203702
    Abstract: Method/system locate external articles using source, detector (PSD), entrance aperture, and magnifying/reducing afocal element—expanding FOR>90°, or refining precision. Between (1) source or detector and (2) aperture, at least one plural-axis-rotatable mirror addresses source/detector throughout FOR. ½- to 15-centimeter mirror enables ˜25 to ˜45 ?radian beam divergence. Aperture, afocal element, and mirror(s) define source-detector path. Mirror(s) rotate in refractory- (or air/magnetic-) bearing mount; or mirror array. Auxiliary optics illuminate mirror back, monitoring return to measure (null-balance feedback) angle. To optimize imaging, auxiliary radiation propagates via splitters toward array (paralleling measurement paths), then focusing on imaging detector. Focal quality is developed as a PSF, optimized vs. angle; stored results later recover optima. Mirror drive uses magnet(s) on mirror(s). “Piston” motion yields in-phase wavefronts, so array dimensions set diffraction limit.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: June 19, 2012
    Assignee: Areté Associates
    Inventors: David M. Kane, Kelly Hillman, Christopher Hornberg, John Hunt, Andrew E. Paul
  • Patent number: 8203703
    Abstract: A light beam is detected/localized by multisector detector—quad-cell, or 5+ sectors handling plural beams. Preferences: Beams focus to diffraction limit on the detector, which reveals origin direction by null-balance—shifting spots to a central sector junction, and measuring shifts to reach there. One or more MEMS reflectors, and control system with programmed processor(s), sequence the spot toward center: following a normal to an intersector boundary; then along the boundary. One afocal optic amplifies MEMS deflections; another sends beams to imaging optics. After it's known which sector received a spot, and the beam shifts, source direction is reported. The system can respond toward that (or a related) direction. It can illuminate objects, generating beams reflectively. Optics define an FOR in which to search; other optics define an FOV (narrower), for imaging spots onto the detector. The FOR:FOV angular ratio is on order of ten—roughly 180:20°, or 120:10°.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 19, 2012
    Assignee: Areté Associates
    Inventors: David M. Kane, Philip Selwyn
  • Publication number: 20120032839
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Applicant: ARETE ASSOCIATES
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Patent number: 7973703
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: July 5, 2011
    Assignee: Areté Associates
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Publication number: 20100302092
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveforms and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Application
    Filed: July 20, 2010
    Publication date: December 2, 2010
    Applicant: ARETE ASSOCIATES
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Patent number: 7830442
    Abstract: A lidar pulse is time resolved in ways that avoid costly, fragile, bulky, high-voltage vacuum devices—and also costly, awkward optical remappers or pushbroom layouts—to provide preferably 3D volumetric imaging from a single pulse, or full-3D volumetric movies. Delay lines or programmed circuits generate time-resolution sweep signals, ideally digital. Preferably, discrete 2D photodiode and transimpedance-amplifier arrays replace a continuous 1D streak-tube cathode. For each pixel a memory-element array forms range bins. An intermediate optical buffer with low, well-controlled capacitance avoids corruption of input signal by these memories.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: November 9, 2010
    Assignee: Areté Associates
    Inventors: Andrew Griffis, Gregory Fetzer, Brian Redman, David Sitter, Asher Gelbart