Patents Assigned to Arete? Associates
  • Patent number: 7800529
    Abstract: A new approach to radar imaging is described herein, in which radar pulses are transmitted with an uneven sampling scheme and subsequently processed with novel algorithms to produce images of equivalent resolution and quality as standard images produced using standard synthetic aperture radar (SAR) waveform and processing techniques. The radar data collected with these waveforms can be used to create many other useful products such as moving target indication (MTI) and high resolution terrain information (HRTI). The waveform and the correction algorithms described herein allow the algorithms of these other radar products to take advantage of the quality Doppler resolution.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 21, 2010
    Assignee: Areté Associates
    Inventors: Jeremy Francis Burri, Michael Howard Farris, Matthew Michael Pohlman, Randall Edward Potter
  • Patent number: 7791786
    Abstract: An afocal beam system corrects excess diffraction from phase error in microelectromechanical mirror offsets. One invention aspect interposes an opposing phase difference, between rays reflected at adjacent mirrors, varying the difference with mirror angle to make it roughly an integral number of waves. Mirror-array (not one-mirror) dimensions limit diffraction. Another aspect sharpens by generating and postprocessing signals to counteract phase difference. A third has, in the optical path, a nonlinear phase-shift device introducing a phase shift, optically convolves that shift with others from mirrors, then deconvolves to extract unshifted signals. A fourth varies mirror position in piston as a function of mirror angle to hold phase difference to an integral number of waves. A fifth aspect has, in the path, at least one delay element—whose delay varies as a function of mirror angle. A sixth has another mirror array in series with the first, matching their angles to introduce opposing phase difference.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: September 7, 2010
    Assignee: Arete' Associates
    Inventors: David M. Kane, Randall E. Potter
  • Patent number: 7732751
    Abstract: A detector and aperture determine radiation characteristics, including angular direction throughout a specified range, of external articles. Preferably an afocal aperture element enlarges/reduces the article and volume FOR. Mirror(s) along a path between detector and aperture, rotatable about plural axes, make the detector address varying regions. Preferably each mirror is MEMS, exceeding five to thirty microns. The detector “sees” articles throughout the range, at constant magnification. Other aspects rotate magnetically controlled dual-axis MEMS mirrors, each with electrical coils opposed across an axis, and anther magnet whose field interacts with coil-current fields, generating force components: one includes oppositely directed forces, torquing the mirrors; another thrusts mirrors outward from the array rest plane, causing variable “piston”. Alternatively, other forces pull mirror(s) outward—and the second component attracts them inward.
    Type: Grant
    Filed: April 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Arete' Associates
    Inventor: David M. Kane
  • Patent number: 7733469
    Abstract: A light beam is detected/localized by multisector detector—quad-cell, or 5+ sectors handling plural beams. Preferences: Beams focus to diffraction limit on the detector, which reveals origin direction by null-balance—shifting spots to a central sector junction, and measuring shifts to reach there. One or more MEMS reflectors, and control system with programmed processor(s), sequence the spot toward center: following a normal to an intersector boundary; then along the boundary. One afocal optic amplifies MEMS deflections; another sends beams to imaging optics. After it's known which sector received a spot, and the beam shifts, source direction is reported. The system can respond toward that (or a related) direction. It can illuminate objects, generating beams reflectively. Optics define an FOR in which to search; other optics define an FOV (narrower), for imaging spots onto the detector. The FOR:FOV angular ratio is on order of ten—roughly 180:20°, or 120:10°.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: June 8, 2010
    Assignee: Arete' Associates
    Inventors: David M. Kane, Philip Selwyn
  • Patent number: 7688348
    Abstract: The system and method relate to detection of objects that are submerged, or partially submerged (e.g. floating), relative to a water surface. One aspect of the invention emits LIDAR fan-beam pulses and analyzes return-pulse portions to determine water-surface orientations and derive submerged-object images corrected for refractive distortion. Another defines simulated images of submerged objects as seen through waves in a water surface, prepares an algorithm for applying a three-dimensional image of the water surface in refractive correction of LIDAR imaging through waves—and also models application of the algorithm to the images, and finally specifies the LIDAR-system optics. Yet another emits nearly horizontal pulses to illuminate small exposed objects at tens of kilometers, detects reflected portions and images successive such portions with a streak-tube subsystem. Still others make special provisions for airborne objects.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 30, 2010
    Assignee: Arete' Associates
    Inventors: Stephen C. Lubard, John W. McLean, David N. Sitter, Jr., J. Kent Bowker, Anthony D. Gleckler
  • Patent number: 7683928
    Abstract: The system and method relate to detection of objects that are submerged, or partially submerged (e.g. floating), relative to a water surface. One aspect of the invention emits LIDAR fan-beam pulses and analyzes return-pulse portions to determine water-surface orientations and derive submerged-object images corrected for refractive distortion. Another defines simulated images of submerged objects as seen through waves in a water surface, prepares an algorithm for applying a three-dimensional image of the water surface in refractive correction of LIDAR imaging through waves—and also models application of the algorithm to the images, and finally specifies the LIDAR-system optics. Yet another emits nearly horizontal pulses to illuminate small exposed objects at tens of kilometers, detects reflected portions and images successive such portions with a streak-tube subsystem. Still others make special provisions for airborne objects.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 23, 2010
    Assignee: Arete' Associates
    Inventors: Stephen C. Lubard, John W. McLean, David N. Sitter, Jr., J. Kent Bowker, Anthony D. Gleckler
  • Patent number: 7652752
    Abstract: Pushbroom and flash lidar operations outside the visible spectrum, most preferably in near-IR but also in IR and UV, are enabled by inserting—ahead of a generally conventional lidar receiver front end—a device that receives light scattered from objects and in response forms corresponding light of a different wavelength from the scattered light. Detailed implementations using arrays of discrete COTS components—most preferably PIN diodes and VCSELs, with intervening semicustom amplifiers—are discussed, as is use of a known monolithic converter. Differential and ratioing multispectral measurements, particularly including UV data, are enabled through either spatial-sharing (e. g. plural-slit) or time-sharing.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: January 26, 2010
    Assignee: Arete' Associates
    Inventors: Gregory J. Fetzer, David N. Sitter, Jr., Douglas Gugler, William L. Ryder, Andrew J. Griffis, David Miller, Asher Gelbart, Shannon Bybee-Driscoll
  • Publication number: 20100002222
    Abstract: The system and method relate to detection of objects that are submerged, or partially submerged (e.g. floating), relative to a water surface. One aspect of the invention emits LIDAR fan-beam pulses and analyzes return-pulse portions to determine water-surface orientations and derive submerged-object images corrected for refractive distortion. Another defines simulated images of submerged objects as seen through waves in a water surface, prepares an algorithm for applying a three-dimensional image of the water surface in refractive correction of LIDAR imaging through waves—and also models application of the algorithm to the images, and finally specifies the LIDAR-system optics. Yet another emits nearly horizontal pulses to illuminate small exposed objects at tens of kilometers, detects reflected portions and images successive such portions with a streak-tube subsystem. Still others make special provisions for airborne objects.
    Type: Application
    Filed: December 27, 2004
    Publication date: January 7, 2010
    Applicant: Arete Associates
    Inventors: Stephen C. Lubard, John W. McLean, David N. Sitter, JR., J. Kent Bowker, Anthony D. Gleckler
  • Patent number: 7534984
    Abstract: Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth etc. dimension—rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wavelength, polarization state, or one or more spatial dimensions—or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 19, 2009
    Assignee: Arete' Associates
    Inventor: Anthony D. Gleckler
  • Patent number: 7440084
    Abstract: Several systems and a method are taught for rapid modulation of a light beam in lidar and other imaging. Most of these involve micromechanical and other very small control components. One such unit is a light-switching fabric, based on displacement of liquid in a tube that crosses a junction of two optical waveguides. In some forms, the fabric is preferably flexible to enable folding or coiling to form a two-dimensional face that interacts with optical-fiber ends an opposed fiber bundle. The rapid operation of the switch fabric enables it to be used as a beam-splitter, separating incoming and return beams; and also to form pulses from supplied CW light. Other control components include micromechanical mirrors (e. g. MEMS mirrors) operated in arrays or singly, liquid-crystal devices, and other controlled-birefringence cells. Some of these devices are placed within an optical system for directional light-beam steering.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: October 21, 2008
    Assignee: Arete' Associates
    Inventor: David M. Kane
  • Patent number: 7297934
    Abstract: In preferred forms of the invention an array of MEMS mirrors or small mirrors inside an optical system operates closed-loop. These mirrors direct external source light, or internally generated light, onto an object—and detect light reflected from it onto a detector that senses the source. Local sensors measure mirror angles relative to the system. Sensor and detector outputs yield source location relative to the system. One preferred mode drives the MEMS mirrors, and field of view seen by the detector, in a raster, collecting a 2-D or 3-D image of the scanned region. Energy reaching the detector can be utilized to analyze object characteristics, or with an optional active distance-detecting module create 2- or 3-D images, based on the object's reflection of light back to the system. In some applications, a response can be generated. The invention can detect sources and locations for various applications.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: November 20, 2007
    Assignee: Areté Associates
    Inventor: David M. Kane
  • Patent number: 7227116
    Abstract: Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth, etc. dimension—rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wave-length, polarization state, or one or more spatial dimensions—or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these, as well as a gigahertz wavefront sensor.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: June 5, 2007
    Assignee: Arete Associates
    Inventor: Anthony D. Gleckler
  • Publication number: 20070035624
    Abstract: The system and method relate to detection of objects that are submerged, or partially submerged (e. g. floating), relative to a water surface. One aspect of the invention emits LIDAR fan-beam pulses and analyzes return-pulse portions to determine water-surface orientations and derive submerged-object images corrected for refractive distortion. Another defines simulated images of submerged objects as seen through waves in a water surface, prepares an algorithm for applying a three-dimensional image of the water surface in refractive correction of LIDAR imaging through waves—and also models application of the algorithm to the images, and finally specifies the LIDAR-system optics. Yet another emits nearly horizontal pulses to illuminate small exposed objects at tens of kilometers, detects reflected portions and images successive such portions with a streak-tube subsystem. Still others make special provisions for airborne objects.
    Type: Application
    Filed: December 27, 2004
    Publication date: February 15, 2007
    Applicant: Arete Associates
    Inventors: Stephen Lubard, John McLean, David Sitter, J. Bowker, Anthony Gleckler
  • Patent number: 7166471
    Abstract: A catalytic conformational sensor method for detecting abnormal proteins and proteinaceous particles. The method is based on the interaction of a peptide fragment or probe with an abnormal proteinaceous particle. The interaction catalyzes transformation of the probe to a predominately beta sheet conformation and allows the probe to bind to the abnormal proteinaceous particle. This in turn, catalyzes propagation of a signal associated with the test sample-bound probe. As a result signals can be propagated even from samples containing very low concentrations of abnormal proteinaceous particles as is the case in many body-fluid derived samples.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 23, 2007
    Assignee: Arete Associates
    Inventors: Cindy Orser, Anne Grosset, Eugene A Davidson
  • Patent number: 7160690
    Abstract: A biosensor method and apparatus for detecting and measuring nitrate. The biosensor is based on the fluorescence properties of a receptor molecule fragment. The biosensor apparatus contains the active-site fragment of the receptor molecule for detecting nitrate. Both the biosensor method and apparatus provide reversible and sensitive detection of nitrate in the form of a versatile method and device.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: January 9, 2007
    Assignee: Arete Associates
    Inventors: Cindy Orser, Denis Pilloud
  • Publication number: 20050254693
    Abstract: An approach for the compression of images such as fingerprints may involve a resolution reduction of an image before forming a cellular representation of the resulting resolution-reduced image. A given fingerprint image is divided into a number of finger pattern cells. Each finger pattern cell is then compared to each finger pattern cell in a set of predetermined finger pattern cells to find a close match. The set of closely matching predetermined finger pattern cells forms the cellular representation. The cellular representation may then be used as a basis for a finger pattern interchange data format for use with pattern-based fingerprint matching algorithms. The finger pattern interchange data comprises an identification of the predetermined finger pattern cells that most closely approximate the finger pattern cells that make up the fingerprint image.
    Type: Application
    Filed: August 12, 2003
    Publication date: November 17, 2005
    Applicants: Arete Associates, Inc., Bioscrypt Inc.
    Inventors: Curt Harkless, Eric Shrader
  • Patent number: 6934435
    Abstract: In one form, one or more micropumps and optical micro-detectors are on a substrate, ideally many per square centimeter, each detecting fluid moved by its pump. A second form has many waveguides and, intersecting each, a fluid chamber controlling radiation in the guide; the device is best immersed in a fluid that moves in and out of chambers, intercepting radiation to yield position data—transmitted e.g. wirelessly for external reception. The device can be a chip in a live creature (e.g. implanted, or in blood); data go to a wireless receiver. Each guide ideally couples to a radiation source and detector. In a third form a membrane deflects a radiation-interacting fluid in a plenum; liquid moves between the plenum and a tube. The plenum cross-section is many times the tube's; radiation in the tube is monitored. Deflected liquid in the tube controls specimen movement to and from the tube.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: August 23, 2005
    Assignee: Areté Associates
    Inventor: David Kane
  • Patent number: 6873716
    Abstract: The system images the volume of a turbid medium and detects the contents. The medium can be water or air, or living tissue, or almost any other material which is at least partially light-transmissive. The system includes a light source for producing a series of discrete fan-shaped pulse beams that are substantially uniform in intensity or have been peaked at the edges of the fan to illuminate sections of the medium, a streak tube with a large, thin-slit-shaped photocathode for collecting the maximum amount of light from weak returns, a field-limiting slit disposed in front of the cathode for removing multiply scattered light, a large-aperture optical element for collecting and focusing the reflected portions of the pulse beam on the field-limiting slit and the cathode, and an array of detectors.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: March 29, 2005
    Assignee: Areté Associates
    Inventors: J. Kent Bowker, Stephen C. Lubard, John W. McLean
  • Patent number: 6856718
    Abstract: A gap in an optical guideway is occupied, when the switch is in its diverting condition, by a quantity of air or other gas. To change the switch to its through condition, an actuator forces a column of liquid against the gas to compress (and thereby displace) the gas in the gap with the liquid. The actuator includes a preferably wide reservoir of the liquid and a diaphragm which is flexed to force the liquid up the column against the gas. When the actuator is deactivated the compressed gas forces the column of liquid out of the gap to return the switch to the diverting condition.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: February 15, 2005
    Assignee: Arete′ Associates
    Inventors: David Kane, Nicol McGruer
  • Patent number: 6836285
    Abstract: In some aspects of the invention, a LIDAR subsystem or other means at an elevated position emit thin fan-beam light pulses at a shallow angle, and detect reflected portions of the pulses at a like angle; a streak-tube subsystem or other means image successive reflected portions to detect objects, for example near a water craft if the elevated position is on such a craft (e.g., a mast or high bridge). In some aspects, the imaging means perform the imaging in a way that tightly localizes reflection from a water surface near the objects, to facilitate detecting the objects despite proximity to the surface. Some preferred embodiments apply a correction for energy reduction, or depth errors, near lateral ends of the fan beam; a lenslet array is preferred for applying the correction. Preferably the shallow angle is in a range of approximately one to fifteen degrees, more preferably approximately two to ten degrees, ideally roughly five degrees.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: December 28, 2004
    Assignee: Arete Associates
    Inventors: Stephen C. Lubard, John W. McLean, David N. Sitter, Jr., J. Kent Bowker, Anthony D. Gleckler