Patents Assigned to ASM America
  • Patent number: 6158951
    Abstract: The invention is a carrier comprising three support elements connected by an underlying frame. The periphery of a wafer rests upon the support elements. The invention also comprises a wafer handler with a plurality of arms. Spacers space the carrier above a base plate associated with a station in a wafer handling area. An arm slides beneath the frame and between the spacers, but the handler does not contact the wafer. A method of using the handler and carrier is provided where the handler lifts and rotates the carrier with the wafer through various stations in a wafer handling area. The handler is capable of moving a plurality of carriers and wafers simultaneously.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: December 12, 2000
    Assignee: ASM America, Inc.
    Inventors: Paul R. Carr, Paul T. Jacobson, James F. Kusbel, James S. Roundy, Ravinder K. Aggarwal, Ivo Raaijmakers
  • Patent number: 6143079
    Abstract: A semiconductor processing chamber, capable of withstanding low pressures while transmitting radiant energy, is provided in a lightweight, compact design. The inner surface of the window is preferably substantially flat and parallel to the wafer to be processed. The window is thin in a center portion and thicker in a surrounding peripheral portion. The thickness increases in the radially outward direction, defined between the flat inner surface and a concave outer surface. Deposition uniformity is improved by employing multiple outlet ports for distributing gas laterally in a short length, enabling a compact, symmetrical geometry. Preferably, a quadra-flow system of gas distribution is used, whereby the chamber contains one inlet port and three outlet ports distributed approximately at 90 degrees around a cylindrical side wall defining the chamber space.
    Type: Grant
    Filed: November 19, 1998
    Date of Patent: November 7, 2000
    Assignee: ASM America, Inc.
    Inventor: Michael W. Halpin
  • Patent number: 6126744
    Abstract: A method to prepare thermal reactors for operation after installation, modification, upgrade and routine preventive maintenance operations. Variations in reaction rate across a wafer surface are used to determine corresponding variations in surface temperature across the wafer surface. Surface temperature variations results in thickness variations of a chemically deposited layer. For selected thicknesses, a chemically deposited layer is transparent and exhibits color variations corresponding to the thickness variations that result from the surface temperature variations. These color variations are then correlated to surface temperature variations to enable wafer heating adjustments to reduce surface temperature variations.
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: October 3, 2000
    Assignee: ASM America, Inc.
    Inventors: Mark Richard Hawkins, Robert Michael Vyne, Cornelius Alexander van der Jeugd
  • Patent number: 6121061
    Abstract: A method is provided for treating wafers on a low mass support. The method includes mounting a temperature sensor in proximity to the wafer, which is supported on the low mass support, such that the sensor is only loosely thermally coupled to the wafer. A temperature controller is programmed to critically tune the wafer temperature in a temperature ramp, though the controller directly controls the sensor temperature. A wafer treatment, such as epitaxial silicon deposition, is started before the sensor temperature has stabilized. Accordingly, significant time is saved for the treatment process, and wafer throughput improved.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: September 19, 2000
    Assignee: ASM America, Inc.
    Inventors: Franciscus Bernardus Maria Van Bilsen, Jason Mathew Layton, Ivo Raaijmakers
  • Patent number: 6113702
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support a wafer in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The support arms conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages are arranged to heat the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: September 4, 1997
    Date of Patent: September 5, 2000
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs, Frank B. M. Van Bilsen, Matthew Goodman, Hartmann Glenn, Jason M. Layton
  • Patent number: 6108937
    Abstract: Methods and apparatuses are provided for cooling semiconductor substrates prior to handling. In one embodiment, a substrate and support structure combination is lifted after high temperature processing to a cold wall of a thermal processing chamber, which acts as a heat sink. Conductive heat transfer across a small gap from the substrate to the heat sink speeds wafer cooling prior to handling the wafer (e.g., with a robot). In another embodiment, a separate plate is kept cool within a pocket during processing, and is moved close to the substrate and support after processing. In yet another embodiment, a cooling station between a processing chamber and a storage cassette includes two movable cold plates, which are movable to positions closely spaced on either side of the wafer.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: August 29, 2000
    Assignee: ASM America, Inc.
    Inventor: Ivo Raaijmakers
  • Patent number: 6093252
    Abstract: An improved chemical vapor deposition reaction chamber having an internal support plate to enable reduced pressure processing. The chamber has a vertical-lateral lenticular cross-section with a wide horizontal dimension and a shorter vertical dimension between bi-convex upper and lower walls. A central horizontal support plate is provided between two lateral side rails of the chamber. A large rounded rectangular aperture is formed in the support plate for positioning a rotatable susceptor on which a wafer is placed. The shaft of the susceptor extends downward through the aperture and through a lower tube depending from the chamber. The support plate segregates the reaction chamber into an upper region and a lower region, with purge gas being introduced through the lower tube into the lower region to prevent unwanted deposition therein. A temperature compensation ring is provided surrounding the susceptor and supported by fingers connected to the support plate.
    Type: Grant
    Filed: April 25, 1996
    Date of Patent: July 25, 2000
    Assignee: ASM America, Inc.
    Inventors: John F. Wengert, Loren R. Jacobs, Michael W. Halpin, Derrick W. Foster, Cornelius A. van der Jeugd, Robert M. Vyne, Mark R. Hawkins
  • Patent number: 6086680
    Abstract: A wafer susceptor for semiconductor processing devices, having a thermal mass which is close to that of the wafer. The similarity between the thermal masses of the susceptor and wafer enables a higher throughput and reduces temperature uniformities across the wafer. The low-mass susceptor may be made of a solid, thin disk with or without a central wafer support recess. A wafer temperature sensing aperture may be provided in the center of the susceptor. Alternatively, a low-mass susceptor is formed with an open-celled silicon carbide foam, with or without a thin skin of solid silicon carbide on the top forming a wafer support surface, or completely encapsulating the open-celled foam. The wafer is preferably supported on a plurality of pins extending upward from the susceptor. In a third embodiment, an ultra low-mass susceptor is formed as a ring with a central throughbore and a surrounding wafer support shelf below an outer ledge.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: July 11, 2000
    Assignee: ASM America, Inc.
    Inventors: Derrick W. Foster, Cornelius A. van der Jeugd, John F. Wengert
  • Patent number: 6073366
    Abstract: A method and apparatus is disclosed for cooling a substrate between high temperature thermal processing steps. In the disclosed embodiment, one or more cooling stations are located off-line within a wafer handling chamber, just outside the thermal processing chamber. After thermal processing, a hot wafer can be loaded on to the cooling station, where the wafer is subjected to forced convection cooling. In particular, the wafer is subjected to cooling gas from above and below through perforated upper and lower shower head assemblies. The wafer can thus be cooled rapidly on a cooling station while other wafers are transferred into and out of the processing chamber. Desirably, the wafer is cooled on the cooling station to a point at which it can be handled by a low temperature wafer handler and stored in a low temperature cassette.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: June 13, 2000
    Assignee: ASM America, Inc.
    Inventor: Thomas W. Aswad
  • Patent number: 6068441
    Abstract: A system for facilitating wafer transfer comprises a susceptor unit consisting of an inner susceptor section which rests within an outer susceptor section. A vertically movable and rotatable support spider located beneath the susceptor unit can rotate into positions to engage either the inner or the outer susceptor sections. When the inner section is engaged, the support spider lifts the inner section vertically out of the outer section. When the outer section is engaged, the support spider raises and lowers the entire susceptor unit. A fork type robotic arm end effector permits wafer pick up and unloading by the inner susceptor section.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: May 30, 2000
    Assignee: ASM America, Inc.
    Inventors: Ivo Raaijmakers, Loren Jacobs, Mike Halpin, Jim Alexander, Ken O'Neill, Dennis Lee Goodwin
  • Patent number: 6053982
    Abstract: A wafer support system comprising a segmented susceptor having top and bottom sections and gas flow passages therethrough. A plurality of spacers projecting from a recess formed in the top section of the susceptor support wafers in spaced relationship with respect to the recess. A sweep gas is introduced to the bottom section of the segmented susceptor and travels through the gas flow passages to exit in at least one circular array of outlets in the recess and underneath the spaced wafer. The sweep gas travels radially outward between the susceptor and wafer to prevent back-side contamination of the wafer. The gas is delivered through a hollow drive shaft and into a multi-armed susceptor support underneath the susceptor. The susceptor support arms are hollow and conduct the sweep gas from the drive shaft to the gas passages in the segmented susceptor. The gas passages within the segmented susceptor are arranged to provide even heat distribution from the sweep gas prior to delivery underneath the wafer.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: April 25, 2000
    Assignee: ASM America, Inc.
    Inventors: Michael W. Halpin, Mark R. Hawkins, Derrick W. Foster, Robert M. Vyne, John F. Wengert, Cornelius A. van der Jeugd, Loren R. Jacobs
  • Patent number: 6042324
    Abstract: Two FOUPs are stacked and moved together towards an equipment wall by a horizontal actuator. FOUP doors are withdrawn as a unit by a horizontal actuator, and lowered as a unit by a vertical actuator to provide access to the interior of the FOUPs.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: March 28, 2000
    Assignee: ASM America, Inc.
    Inventors: Ravinder Aggarwal, Ronald R. Stevens
  • Patent number: 6021152
    Abstract: A reflector plate is provided for scattering radiant heat energy in a semiconductor processing reactor chamber to achieve uniform temperature across a substrate to be processed. The surface is characterized by a plurality of adjoining depressions with substantially no planar sections among the depressions. The width to depth ratio for the depressions averages over 3:1. Crests separating the depressions define an angle of greater than about 60.degree., thus providing a relatively smooth texture for the reflecting surface. The reflecting surface is thus easy to clean. A method of manufacturing the reflector plate comprises removing material from a planar metal surface by ball-end milling. The depth of each depression and degree of overlap with adjacent depressions can randomly vary within selected ranges. A highly specular finish is then provided on the stippled surface by gold electroplating.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: February 1, 2000
    Assignee: ASM America, Inc.
    Inventors: Aage Olsen, Michael W. Halpin
  • Patent number: 4799451
    Abstract: An electrode boat assembly for holding workpieces to be processed within a chemical reaction process during the chemical vapor process. The electrode boat assembly comprises a plurality of electrode plates held in position by rods and spacer sleeves in order to provide easy assembly and disassembly. Two of the rods are electrically conductive in order to set up plasma field between adjacent electrode plates. Insulating spacer sleeves over the conductive rods preclude plasma formation at unwanted locations. The spacers sleeves and electrode rods have substantially the same coefficient of thermal expansion to minimize warpage and breakage of electrode boat components.
    Type: Grant
    Filed: February 20, 1987
    Date of Patent: January 24, 1989
    Assignee: ASM America, Inc.
    Inventor: Steven J. Gardner
  • Patent number: 4753598
    Abstract: A pair of contacts are disposed in holes in a retaining member that pivots about a longitudinal centerline. Because the member pivots, the contacts are maintained in an abutting relationship with contacts of a semiconductor boat assembly.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: June 28, 1988
    Assignee: ASM America, Inc.
    Inventors: Ivan J. Gignac, Earl J. Fleck
  • Patent number: 4744550
    Abstract: A vacuum wafer expander apparatus and method of wafers for use in electrical circuitry. A plurality of electronic semiconductor devices being connected to a flexible member means suitable for are mounted on a brace or bracket frame member means. The brace or bracket frame member means is suitable for being removably mounted on a bracket mounting means having a groove therearound for accommodating a vacuum therein to allow an abutting portion of the flexible material to be pushed in said groove; thus expanding the flexible member means as well as the plurality of electronic semiconductor devices thereon. The electronic semiconductor devices can thereafter be optically inspected and individually picked up from the flexible member means for processing.
    Type: Grant
    Filed: April 24, 1986
    Date of Patent: May 17, 1988
    Assignee: ASM America, Inc.
    Inventor: Ivan W. Oglesbee