Patents Assigned to ATI Properties, Inc.
-
Publication number: 20100276112Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.Type: ApplicationFiled: July 7, 2010Publication date: November 4, 2010Applicant: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Richard L. Kennedy
-
Publication number: 20100258262Abstract: Methods and apparatus for producing large diameter superalloy ingots are disclosed. A material comprising at least one of a metal and a metallic alloy is introduced into a pressure-regulated chamber in a melting assembly. The material is subjected to a wide-area electron field within the pressure-regulated chamber to heat the material to a temperature above the melting temperature of the material to form a molten alloy. At least one stream of molten alloy from the pressure-regulated chamber is provided from the melting assembly and is fed into an atomizing assembly, where particles of the molten alloy are generated by impinging electrons on the molten alloy to atomize the molten alloy. At least one of an electrostatic field and an electromagnetic field are produced to influence the particles of the molten alloy. The particles of the molten alloy are deposited onto a collector in a spray forming operation to form an alloy ingot.Type: ApplicationFiled: June 23, 2010Publication date: October 14, 2010Applicant: ATI Properties, Inc.Inventor: Robin M. Forbes Jones
-
Patent number: 7811528Abstract: A process and reactor for chemical conversion is taught. The process allows the selective breaking of chemical bonds in a molecule by use of fast rise alternating current or fast rise pulsed direct current, each fast rise portion being selected to have a suitable voltage and frequency to break a selected chemical bond in a molecule. The reactor for carrying out such a process includes a chamber for containing the molecule and a generator for generating and applying the selected fast rise current.Type: GrantFiled: January 9, 2006Date of Patent: October 12, 2010Assignee: ATI Properties, Inc.Inventors: Wayne Ernest Conrad, Richard Stanley Phillips, Andrew Richard Henry Phillips, Helmut Gerhard Conrad
-
Patent number: 7803211Abstract: Methods and apparatus for producing large diameter superalloy ingots are disclosed. A material comprising at least one of a metal and a metallic alloy is introduced into a pressure-regulated chamber in a melting assembly. The material is subjected to a wide-area electron field within the pressure-regulated chamber to heat the material to a temperature above the melting temperature of the material to form a molten alloy. At least one stream of molten alloy from the pressure-regulated chamber is provided from the melting assembly and is fed into an atomizing assembly, where particles of the molten alloy are generated by impinging electrons on the molten alloy to atomize the molten alloy. At least one of an electrostatic field and an electromagnetic field are produced to influence the particles of the molten alloy. The particles of the molten alloy are deposited onto a collector in a spray forming operation to form an alloy ingot.Type: GrantFiled: March 21, 2008Date of Patent: September 28, 2010Assignee: ATI Properties, Inc.Inventor: Robin M. Forbes Jones
-
Patent number: 7803212Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles.Type: GrantFiled: March 21, 2008Date of Patent: September 28, 2010Assignee: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Richard L. Kennedy
-
Patent number: 7798199Abstract: A nucleated casting apparatus including an atomizing nozzle configured to produce a droplet spray of a metallic material, a mold configured to receive the droplet spray and form a preform therein, and a gas injector which can limit, and possibly prevent, overspray from accumulating on the mold. The gas injector can be configured to produce a gas flow which can impinge on the droplet spray to redirect at least a portion of the droplet spray away from a side wall of the mold. In various embodiments, the droplet spray may be directed by the atomizing nozzle in a generally downward direction and the gas flow may be directed in a generally upward direction such that the gas flow circumscribes the perimeter of the mold.Type: GrantFiled: December 4, 2007Date of Patent: September 21, 2010Assignee: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Sterry A. Shaffer
-
Patent number: 7700038Abstract: A formed article for making alloying additions to metal melts includes particles of at least one master alloy and a binder material binding the particles of the master alloy in the formed article. The binder material changes form and frees the master alloy particles when the formed article is heated to a predetermined temperature, preferably a temperature greater than 500° F. A method for making an alloy also is provided. The method includes preparing a melt comprising a predetermined quantity of a master alloy wherein the master alloy is added to the melt or the melt starting materials in the form of particles of the master alloy bound into at least one formed article by a binder material that decomposes at a predetermined temperature, preferably a temperature greater than 500° F., and releases the particles of master alloy.Type: GrantFiled: March 21, 2005Date of Patent: April 20, 2010Assignee: ATI Properties, Inc.Inventors: Timothy F. Soran, Matthew J. Arnold
-
Publication number: 20100047105Abstract: An austenitic stainless steel composition including relatively low Ni and Mo levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher Ni and Mo levels. Embodiments of the austenitic stainless steel include, in weight percentages, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 15.0-23.0 Cr, 1.0-9.5 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, (7.5(% C))?(%Nb+%Ti+%V+%Ta+%Zr)?1.5, Fe, and incidental impurities.Type: ApplicationFiled: November 2, 2009Publication date: February 25, 2010Applicant: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski
-
Publication number: 20100018615Abstract: A thermal mechanical treatment method includes hot working a precipitation hardening martensitic stainless steel, quenching the stainless steel, and aging the stainless steel. According to certain embodiments, the thermal mechanical treatment does not include solution heat treating the stainless steel prior to aging or cryogenically cooling the stainless steel. An article includes a precipitation hardening martensitic stainless steel having a process history that includes hot working the stainless steel, quenching the stainless steel, and aging the stainless steel. According to certain embodiments, the process history does not include solution heat treating the stainless steel prior to aging or cryogenically cooling the stainless steel.Type: ApplicationFiled: July 28, 2008Publication date: January 28, 2010Applicant: ATI Properties, Inc.Inventors: Wei-Di Cao, Erin T. McDevitt
-
Publication number: 20100018616Abstract: Methods for producing zirconium strips that demonstrate improved formability are disclosed. The zirconium strips of the present disclosure have a purity and crystalline microstructure suitable for improved formability, for example, in the manufacture of certain articles such as panels for plate heat exchangers and high performance tower packing components. Other embodiments disclosed herein relate to formed substantially pure zirconium strip, articles of manufacture produced from the substantially pure zirconium strip, and methods for making the articles of manufacture.Type: ApplicationFiled: September 30, 2009Publication date: January 28, 2010Applicant: ATI Properties, Inc.Inventor: Craig M. Eucken
-
Publication number: 20100012629Abstract: An apparatus for melting an electrically conductive metallic material comprises an auxiliary ion plasma electron emitter configured to produce a focused electron field including a cross-sectional profile having a first shape. The apparatus further comprises a steering system configured to direct the focused electron field to impinge the focused electron field on at least a portion of the electrically conductive metallic material to at least one of melt or heat any solidified portions of the electrically conductive metallic material, any solid condensate within the electrically conductive metallic material, and/or regions of a solidifying ingot.Type: ApplicationFiled: August 25, 2009Publication date: January 21, 2010Applicant: ATI Properties, Inc.Inventor: Robin M. Forbes Jones
-
Patent number: 7628874Abstract: Embodiments of the present invention provide methods of processing nickel-titanium alloys including from greater than 50 up to 55 atomic percent nickel to provide a desired austenite transformation temperature and/or austenite transformation temperature range. In one embodiment, the method comprises selecting a desired austenite transformation temperature, and thermally processing the nickel-titanium alloy to adjust an amount of nickel in solid solution in a TiNi phase of the alloy such that a stable austenite transformation temperature is reached, wherein the stable austenite transformation temperature is essentially equal to the desired austenite transformation temperature.Type: GrantFiled: February 19, 2007Date of Patent: December 8, 2009Assignee: ATI Properties, Inc.Inventor: Craig Wojcik
-
Patent number: 7625453Abstract: Methods for producing zirconium strips that demonstrate improved formability are disclosed. The zirconium strips of the present disclosure have a purity and crystalline microstructure suitable for improved formability, for example, in the manufacture of certain articles such as panels for plate heat exchangers and high performance tower packing components. Other embodiments disclosed herein relate to formed substantially pure zirconium strip, articles of manufacture produced from the substantially pure zirconium strip, and methods for making the articles of manufacture.Type: GrantFiled: September 7, 2005Date of Patent: December 1, 2009Assignee: ATI Properties, Inc.Inventor: Craig M. Eucken
-
Publication number: 20090272228Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a field generating assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles. The field generating assembly produces at least one of an electrostatic field and an electromagnetic field between the atomizing assembly and the collector. The molten alloy particles interact with the at least one field, which influences at least one of the acceleration, speed, and direction of the molten alloy particles. Related methods also are disclosed.Type: ApplicationFiled: July 14, 2009Publication date: November 5, 2009Applicant: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Richard L. Kennedy
-
Patent number: 7611592Abstract: Various non-limiting embodiments of the present invention relate to methods of processing titanium alloys wherein the alloys are subjected to deformation above the beta transus temperature (T?) of the alloys. For example, one non-limiting embodiment provides a method of processing an alpha+beta or a near-beta titanium alloy comprising deforming a body of the alloy at a first temperature (T1) that is above the T? of the alloy; recrystallizing at least a portion of the alloy by deforming and/or holding the body at a second temperature (T2) that is greater than T1; and deforming the body at a third temperature (T3), wherein T1?T3>T?; wherein essentially no deformation of the body occurs at a temperature below T? during the method of processing the titanium alloy.Type: GrantFiled: February 23, 2006Date of Patent: November 3, 2009Assignee: ATI Properties, Inc.Inventors: R. Mark Davis, Matthew J. Arnold
-
Patent number: 7578960Abstract: One non-limiting embodiment of an apparatus for forming an alloy powder or preform includes a melting assembly, an atomizing assembly, and a field generating assembly, and a collector. The melting assembly produces at least one of a stream of a molten alloy and a series of droplets of a molten alloy, and may be substantially free from ceramic in regions contacted by the molten alloy. The atomizing assembly generates electrons and impinges the electrons on molten alloy from the melting assembly, thereby producing molten alloy particles. The field generating assembly produces at least one of an electrostatic field and an electromagnetic field between the atomizing assembly and the collector. The molten alloy particles interact with the at least one field, which influences at least one of the acceleration, speed, and direction of the molten alloy particles. Related methods also are disclosed.Type: GrantFiled: September 22, 2005Date of Patent: August 25, 2009Assignee: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Richard L. Kennedy
-
Publication number: 20090162237Abstract: An austenitic stainless steel composition including relatively low nickel and molybdenum levels, and exhibiting corrosion resistance, resistance to elevated temperature deformation, and formability properties comparable to certain alloys including higher nickel and molybdenum levels. Embodiments of the austenitic stainless steel include, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.05-0.35 N, up to 4.0 W, (7.5(% C))?(Nb+Ti+V+Ta+Zr)?1.5, up to 0.01 B, up to 1.0 Co, iron and impurities. Additionally, embodiments of the steel may include 0.5?(Mo+W/2)?5.0 and/or 1.0?(Ni+Co)?8.0.Type: ApplicationFiled: February 20, 2008Publication date: June 25, 2009Applicant: ATI Properties, Inc.Inventors: James M. Rakowski, David S. Bergstrom, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Publication number: 20090162238Abstract: An austenitic stainless steel composition having low nickel and molybdenum and exhibiting high corrosion resistance and good formability. The austenitic stainless steel includes, in weight %, up to 0.20 C, 2.0-6.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 5.0-7.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities. The austenitic stainless steel has a ferrite number less than 11 and an MD30 value less than ?10° C.Type: ApplicationFiled: February 26, 2008Publication date: June 25, 2009Applicant: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb
-
Publication number: 20090139682Abstract: A nucleated casting apparatus including an atomizing nozzle configured to produce a droplet spray of a metallic material, a mold configured to receive the droplet spray and form a preform therein, and a gas injector which can limit, and possibly prevent, overspray from accumulating on the mold. The gas injector can be configured to produce a gas flow which can impinge on the droplet spray to redirect at least a portion of the droplet spray away from a side wall of the mold. In various embodiments, the droplet spray may be directed by the atomizing nozzle in a generally downward direction and the gas flow may be directed in a generally upward direction such that the gas flow circumscribes the perimeter of the mold.Type: ApplicationFiled: December 4, 2007Publication date: June 4, 2009Applicant: ATI Properties, Inc.Inventors: Robin M. Forbes Jones, Sterry A. Shaffer
-
Publication number: 20090142218Abstract: An austenitic stainless steel having low nickel and molybdenum and exhibiting comparable corrosion resistance and formability properties to higher nickel and molybdenum alloys comprises, in weight %, up to 0.20 C, 2.0-9.0 Mn, up to 2.0 Si, 16.0-23.0 Cr, 1.0-5.0 Ni, up to 3.0 Mo, up to 3.0 Cu, 0.1-0.35 N, up to 4.0 W, up to 0.01 B, up to 1.0 Co, iron and impurities, the steel having a ferrite number of less than 10 and a MD30 value of less than 20° C.Type: ApplicationFiled: February 26, 2008Publication date: June 4, 2009Applicant: ATI Properties, Inc.Inventors: David S. Bergstrom, James M. Rakowski, Charles P. Stinner, John J. Dunn, John F. Grubb