Patents Assigned to ATOMERA INCORPORATED
-
Patent number: 12382689Abstract: A method for making a double-diffused MOS (DMOS) device may include forming a semiconductor layer having a first conductivity type, forming a drift region of a second conductivity type in the semiconductor substrate, forming spaced-apart source and drain regions in the semiconductor layer, and forming a first superlattice on the semiconductor layer. The first superlattice may include a plurality of stacked groups of layers, each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may also include forming a gate above the first superlattice, and a forming field plate layer adjacent the drift region and configured to deplete the drift region.Type: GrantFiled: May 8, 2024Date of Patent: August 5, 2025Assignee: ATOMERA INCORPORATEDInventors: Richard Burton, Shuyi Li
-
Patent number: 12322594Abstract: A method for making a semiconductor device may include forming a first single crystal silicon layer having a first percentage of silicon 28, and forming a superlattice above the first single crystal silicon layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base silicon monolayers defining a base silicon portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The method may further include forming a second single crystal silicon layer above the superlattice having a second percentage of silicon 28 higher than the first percentage of silicon 28.Type: GrantFiled: June 20, 2024Date of Patent: June 3, 2025Assignee: ATOMERA INCORPORATEDInventors: Marek Hytha, Keith Doran Weeks, Nyles Wynn Cody, Hideki Takeuchi
-
Patent number: 12315722Abstract: A method for making a semiconductor device may include, in an epitaxial deposition tool, performing an anneal on a semiconductor on insulator (SOI) substrate including a first semiconductor layer, an insulating layer on the first semiconductor layer, and a second semiconductor layer on the insulating layer, the second semiconductor layer having a first thickness. The method may also include, in the epitaxial deposition tool, performing an in-situ etch to reduce the second semiconductor layer to a second thickness less than the first thickness, and forming a superlattice layer on the second semiconductor layer. The superlattice layer may include a plurality of stacked groups of layers, each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: March 14, 2024Date of Patent: May 27, 2025Assignee: ATOMERA INCORPORATEDInventors: Nyles Wynn Cody, Keith D. Weeks, Robert Michael Vyne, Robert J. Stephenson
-
Patent number: 12315723Abstract: A method for making a semiconductor device may include forming a superlattice above a semiconductor layer, the superlattice including a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include selectively etching the superlattice to remove semiconductor atoms and cause non-semiconductor atoms to accumulate adjacent the semiconductor layer, epitaxially growing an active semiconductor device layer above the semiconductor layer and accumulated non-semiconductor atoms after the selective etching, and forming at least one circuit in the epitaxially grown active semiconductor device layer.Type: GrantFiled: June 22, 2023Date of Patent: May 27, 2025Assignee: ATOMERA INCORPORATEDInventors: Marek Hytha, Keith Doran Weeks, Nyles Wynn Cody
-
Patent number: 12230694Abstract: A method for making a semiconductor device may include forming spaced apart gate stacks on a substrate with adjacent gate stacks defining a respective trench therebetween. Each gate stack may include alternating layers of first and second semiconductor materials, with the layers of the second semiconductor material defining nanostructures. The method may further include forming respective source/drain regions within the trenches, respective insulating regions adjacent lateral ends of the layers of the first semiconductor material, and respective conductive contact liners in the trenches.Type: GrantFiled: March 22, 2024Date of Patent: February 18, 2025Assignee: ATOMERA INCORPORATEDInventor: Donghun Kang
-
Patent number: 12199180Abstract: A semiconductor device may include a substrate and spaced apart first and second doped regions in the substrate. The first doped region may be larger than the second doped region to define an asymmetric channel therebetween. The semiconductor device may further include a superlattice extending between the first and second doped regions to constrain dopant therein. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A gate may overly the asymmetric channel.Type: GrantFiled: November 21, 2023Date of Patent: January 14, 2025Assignee: ATOMERA INCORPORATEDInventors: Hideki Takeuchi, Richard Burton, Yung-Hsuan Yang
-
Patent number: 12199148Abstract: A semiconductor device may include a semiconductor layer, and a superlattice adjacent the semiconductor layer and including stacked groups of layers. Each group of layers may include stacked base semiconductor monolayers defining a base semiconductor portion, and at least one oxygen monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one oxygen monolayer of a given group of layers may include an atomic percentage of 18O greater than 10 percent.Type: GrantFiled: June 23, 2023Date of Patent: January 14, 2025Assignee: ATOMERA INCORPORATEDInventors: Marek Hytha, Nyles Wynn Cody, Keith Doran Weeks
-
Method for making a semiconductor superlattices with different non-semiconductor thermal stabilities
Patent number: 12191160Abstract: A method for making a semiconductor device may include forming first and second superlattices adjacent a semiconductor layer. Each of the first and second superlattices may include stacked groups of layers, with each group of layers including stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The second superlattice may have a greater thermal stability with respect to non-semiconductor atoms therein than the first superlattice. The method may further include heating the first and second superlattices to cause non-semiconductor atoms from the first superlattice to migrate toward the at least one non-semiconductor monolayer of the second superlattice.Type: GrantFiled: July 1, 2021Date of Patent: January 7, 2025Assignee: ATOMERA INCORPORATEDInventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears -
Patent number: 12142662Abstract: A method for making semiconductor device may include forming spaced apart gate stacks on a substrate defining respective trenches therebetween. Each gate stack may include alternating layers of first and second semiconductor materials, with the layers of the second semiconductor material defining nanostructures. The method may further include forming respective source/drain regions within the trenches, forming respective insulating regions adjacent lateral ends of the layers of the first semiconductor material, and forming respective dopant blocking superlattices adjacent lateral ends of the nanostructures and offset outwardly from adjacent surfaces of the insulating regions. Each dopant blocking superlattice may include a plurality of stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: March 22, 2024Date of Patent: November 12, 2024Assignee: ATOMERA INCORPORATEDInventor: Donghun Kang
-
Patent number: 12142641Abstract: A method for making a semiconductor gate-all-around (GAA) device may include forming source and drain regions on a semiconductor substrate, forming a plurality of semiconductor nanostructures extending between the source and drain regions, and forming a gate surrounding the plurality of semiconductor nanostructures in a gate-all-around arrangement. Furthermore, the method may include forming at least one superlattice may be within at least one of the nanostructures. The at least one superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: December 21, 2022Date of Patent: November 12, 2024Assignee: ATOMERA INCORPORATEDInventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson, Hideki Takeuchi
-
Patent number: 12142669Abstract: A method for making a semiconductor device may include forming spaced apart gate stacks on a substrate defining respective trenches therebetween. Each gate stack may include alternating layers of first and second semiconductor materials, with the layers of the second semiconductor material defining nanostructures. The method may further include forming respective source/drain regions within the trenches, forming respective insulating regions adjacent lateral ends of the layers of the first semiconductor material, and forming respective dopant blocking superlattices adjacent lateral ends of the nanostructures and flush with adjacent surfaces of the insulating regions. Each dopant blocking superlattice may include stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: March 22, 2024Date of Patent: November 12, 2024Assignee: ATOMERA INCORPORATEDInventor: Donghun Kang
-
Patent number: 12119380Abstract: A method for making a semiconductor device may include forming a superlattice adjacent a semiconductor layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The at least one non-semiconductor monolayer in a first group of layers of the superlattice may comprise oxygen and be devoid of carbon, and the at least one non-semiconductor monolayer in a second group of layers of the superlattice may comprise carbon.Type: GrantFiled: November 3, 2023Date of Patent: October 15, 2024Assignee: ATOMERA INCORPORATEDInventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson, Hideki Takeuchi
-
Patent number: 12046470Abstract: A method for making a semiconductor device may include forming a first single crystal silicon layer having a first percentage of silicon 28, and forming a superlattice above the first single crystal silicon layer. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base silicon monolayers defining a base silicon portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions. The method may further include forming a second single crystal silicon layer above the superlattice having a second percentage of silicon 28 higher than the first percentage of silicon 28.Type: GrantFiled: August 23, 2023Date of Patent: July 23, 2024Assignee: ATOMERA INCORPORATEDInventors: Marek Hytha, Keith Doran Weeks, Nyles Wynn Cody, Hideki Takeuchi
-
Patent number: 12020926Abstract: A radio frequency (RF) semiconductor device may include a semiconductor-on-insulator substrate, and an RF ground plane layer on the semiconductor-on-insulator substrate including a conductive superlattice. The conductive superlattice may include stacked groups of layers, with each group of layers comprising stacked doped base semiconductor monolayers defining a doped base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent doped base semiconductor portions. The RF semiconductor device may further include a body above the RF ground plane layer, spaced apart source and drain regions adjacent the body and defining a channel region in the body, and a gate overlying the channel region.Type: GrantFiled: March 3, 2022Date of Patent: June 25, 2024Assignee: ATOMERA INCORPORATEDInventors: Hideki Takeuchi, Robert J. Mears
-
Patent number: 12014923Abstract: A method for making a radio frequency (RF) semiconductor device may include forming an RF ground plane layer on a semiconductor-on-insulator substrate and including a conductive superlattice. The conductive superlattice may include stacked groups of layers, with each group of layers including stacked doped base semiconductor monolayers defining a doped base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent doped base semiconductor portions. The method may further include forming a body above the RF ground plane layer, forming spaced apart source and drain regions adjacent the body and defining a channel region in the body, and forming a gate overlying the channel region.Type: GrantFiled: June 22, 2023Date of Patent: June 18, 2024Assignee: ATOMERA INCORPORATEDInventors: Hideki Takeuchi, Robert J. Mears
-
Patent number: 11978771Abstract: A semiconductor gate-all-around (GAA) device may include a semiconductor substrate, source and drain regions on the semiconductor substrate, a plurality of semiconductor nanostructures extending between the source and drain regions, and a gate surrounding the plurality of semiconductor nanostructures in a gate-all-around arrangement. Furthermore, at least one superlattice may be within at least one of the nanostructures. The at least one superlattice may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.Type: GrantFiled: December 21, 2022Date of Patent: May 7, 2024Assignee: ATOMERA INCORPORATEDInventors: Keith Doran Weeks, Nyles Wynn Cody, Marek Hytha, Robert J. Mears, Robert John Stephenson, Hideki Takeuchi
-
Patent number: 11935940Abstract: A method for making a bipolar junction transistor (BJT) may include forming a first superlattice on a substrate defining a collector region therein. The first superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a base on the first superlattice, and forming a second superlattice on the base comprising a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may also include forming an emitter on the second superlattice.Type: GrantFiled: July 26, 2022Date of Patent: March 19, 2024Assignee: ATOMERA INCORPORATEDInventor: Richard Burton
-
Patent number: 11923431Abstract: A bipolar junction transistor (BJT) may include a substrate defining a collector region therein. A first superlattice may be on the substrate including a plurality of stacked groups of first layers, with each group of first layers including a first plurality of stacked base semiconductor monolayers defining a first base semiconductor portion, and at least one first non-semiconductor monolayer constrained within a crystal lattice of adjacent first base semiconductor portions. Furthermore, a base may be on the first superlattice, and a second superlattice may be on the base including a second plurality of stacked groups of second layers, with each group of second layers including a plurality of stacked base semiconductor monolayers defining a second base semiconductor portion, and at least one second non-semiconductor monolayer constrained within a crystal lattice of adjacent second base semiconductor portions. An emitter may be on the second superlattice.Type: GrantFiled: July 26, 2022Date of Patent: March 5, 2024Assignee: ATOMERA INCORPORATEDInventor: Richard Burton
-
Patent number: 11923418Abstract: A semiconductor device may include a first single crystal silicon layer having a first percentage of silicon 28; a second single crystal silicon layer having a second percentage of silicon 28 higher than the first percentage of silicon 28; and a superlattice between the first and second single crystal silicon layers. The superlattice may include stacked groups of layers, with each group of layers including stacked base silicon monolayers defining a base silicon portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base silicon portions.Type: GrantFiled: April 21, 2021Date of Patent: March 5, 2024Assignee: ATOMERA INCORPORATEDInventors: Marek Hytha, Keith Doran Weeks, Nyles Wynn Cody, Hideki Takeuchi
-
Patent number: 11869968Abstract: A semiconductor device may include a substrate and spaced apart first and second doped regions in the substrate. The first doped region may be larger than the second doped region to define an asymmetric channel therebetween. The semiconductor device may further include a superlattice extending between the first and second doped regions to constrain dopant therein. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A gate may overly the asymmetric channel.Type: GrantFiled: April 12, 2022Date of Patent: January 9, 2024Assignee: ATOMERA INCORPORATEDInventors: Hideki Takeuchi, Richard Burton, Yung-Hsuan Yang