Patents Assigned to ATOMERA INCORPORATED
  • Patent number: 11355667
    Abstract: A method for making a semiconductor device may include forming a plurality of waveguides on a substrate, and forming a superlattice overlying the substrate and waveguides. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming an active device layer on the superlattice comprising at least one active semiconductor device.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: June 7, 2022
    Assignee: ATOMERA INCORPORATED
    Inventor: Robert John Stephenson
  • Patent number: 11329154
    Abstract: A semiconductor device may include a substrate and spaced apart first and second doped regions in the substrate. The first doped region may be larger than the second doped region to define an asymmetric channel therebetween. The semiconductor device may further include a superlattice extending between the first and second doped regions to constrain dopant therein. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A gate may overly the asymmetric channel.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: May 10, 2022
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Richard Burton, Yung-Hsuan Yang
  • Patent number: 11302823
    Abstract: A method for making a semiconductor device may include forming a superlattice on a semiconductor substrate and including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A first at least one non-semiconductor monolayer may be constrained within the crystal lattice of a first pair of adjacent base semiconductor portions and comprise a first non-semiconductor material, and a second at least one non-semiconductor monolayer may be constrained within the crystal lattice of a second pair of adjacent base semiconductor portions and comprise a second non-semiconductor material different than the first non-semiconductor material.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: April 12, 2022
    Assignee: ATOMERA INCORPORATED
    Inventors: Keith Doran Weeks, Nyles Wynn Cody
  • Patent number: 11183565
    Abstract: A semiconductor device may include a substrate and a hyper-abrupt junction region carried by the substrate. The hyper-abrupt region may include a first semiconductor layer having a first conductivity type, a first superlattice layer on the first semiconductor layer, a second semiconductor layer on the first superlattice layer and having a second conductivity type different than the first conductivity type, and a second superlattice layer on the second semiconductor layer. The semiconductor device may further include a gate dielectric layer on the second superlattice layer of the hyper-abrupt junction region, a gate electrode on the gate dielectric layer, and spaced apart source and drain regions adjacent the hyper-abrupt junction region.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 23, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 11177351
    Abstract: A semiconductor device may include a semiconductor substrate, and a superlattice on the semiconductor substrate and including a plurality of stacked groups of layers. Each group of layers of the superlattice may include a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. A first at least one non-semiconductor monolayer may be constrained within the crystal lattice of a first pair of adjacent base semiconductor portions and comprise a first non-semiconductor material, and a second at least one non-semiconductor monolayer may be constrained within the crystal lattice of a second pair of adjacent base semiconductor portions and comprise a second non-semiconductor material different than the first non-semiconductor material.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: November 16, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Keith Doran Weeks, Nyles Wynn Cody
  • Patent number: 11094818
    Abstract: A method for making a semiconductor device may include forming spaced apart first and second doped regions in a substrate. The first doped region may be larger than the second doped region to define an asymmetric channel therebetween. The method may further include forming a superlattice extending between the first and second doped regions to constrain dopant therein. The superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may also include forming a gate overlying the asymmetric channel.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 17, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Richard Burton, Yung-Hsuan Yang
  • Patent number: 11075078
    Abstract: A method for making a semiconductor device may include forming an isolation region adjacent an active region in a semiconductor substrate, and selectively etching the active region so that an upper surface of the active region is below an adjacent surface of the isolation region and defining a stepped edge therewith. The method may further include forming a superlattice overlying the active region. The superlattice may include stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: July 27, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Nyles Wynn Cody, Keith Doran Weeks, Robert John Stephenson, Richard Burton, Yi-Ann Chen, Dmitri Choutov, Hideki Takeuchi, Yung-Hsuan Yang
  • Patent number: 10937868
    Abstract: A method for making a semiconductor device may include forming a hyper-abrupt junction region above a substrate and including a first semiconductor layer having a first conductivity type, a first superlattice layer on the first semiconductor layer, a second semiconductor layer on the first superlattice layer and having a second conductivity type different than the first conductivity type, and a second superlattice layer on the second semiconductor layer. The method may further include forming a gate dielectric layer on the second superlattice layer of the hyper-abrupt junction region, forming a gate electrode on the gate dielectric layer, and forming spaced apart source and drain regions adjacent the hyper-abrupt junction region.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 2, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 10937888
    Abstract: A method for making a semiconductor device may include forming a hyper-abrupt junction region above a substrate and including a first semiconductor layer having a first conductivity type, a first superlattice layer on the first semiconductor layer, a second semiconductor layer on the first superlattice layer and having a second conductivity type different than the first conductivity type, and a second superlattice layer on the second semiconductor layer. The method may further include forming a first contact coupled to the hyper-abrupt junction region and a second contact coupled to the substrate to define a varactor. The first and second superlattices may each include stacked groups of layers, with each group of layers comprising stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: March 2, 2021
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 10884185
    Abstract: A semiconductor device may include a substrate having waveguides thereon, and a superlattice overlying the substrate and waveguides. The superlattice may include stacked groups of layers, with each group of layers comprising a stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include an active device layer on the superlattice including at least one active semiconductor device.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: January 5, 2021
    Assignee: ATOMERA INCORPORATED
    Inventor: Robert John Stephenson
  • Patent number: 10879357
    Abstract: A method for making semiconductor device may include forming a hyper-abrupt junction region on a substrate and including a first semiconductor layer having a first conductivity type, a superlattice layer on the first semiconductor layer, and a second semiconductor layer on the superlattice layer and having a second conductivity type different than the first conductivity type. The first, second, and the superlattice layers may be U-shaped. The method may further include forming a gate dielectric layer on the second semiconductor layer of the hyper-abrupt junction region, forming a gate electrode on the gate dielectric layer, and forming spaced apart source and drain regions adjacent the hyper-abrupt junction region.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 29, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 10879356
    Abstract: A method for making a semiconductor device may include forming a trench in a semiconductor substrate, and forming a superlattice liner covering bottom and sidewall portions of the trench. The superlattice liner may include a plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a semiconductor cap layer on the superlattice liner and having a dopant constrained therein by the superlattice liner, and forming a conductive body within the trench.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: December 29, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Robert John Stephenson, Richard Burton, Dmitri Choutov, Nyles Wynn Cody, Daniel Connelly, Robert J. Mears, Erwin Trautmann
  • Patent number: 10868120
    Abstract: A method for making a semiconductor device may include forming a hyper-abrupt junction region on a substrate. The hyper-abrupt junction region may include a first semiconductor layer having a first conductivity type, a superlattice layer on the first semiconductor layer, and a second semiconductor layer on the superlattice layer and having a second conductivity type different than the first conductivity type. The superlattice may include stacked groups of layers, with each group of layers including stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a first contact coupled to the hyper-abrupt junction regions, and forming a second contact coupled to the substrate to define a varactor.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: December 15, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 10854717
    Abstract: A method for making a FINFET may include forming spaced apart source and drain regions in a semiconductor fin with a channel region extending therebetween. At least one of the source and drain regions may be divided into a lower region and an upper region by a dopant diffusion blocking superlattice, with the upper region having a same conductivity and higher dopant concentration than the lower region. The dopant diffusion blocking superlattice may include a plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The method may further include forming a gate on the channel region.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 1, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10847618
    Abstract: A semiconductor device may include a semiconductor layer, spaced apart source and drain regions in the semiconductor layer with a channel region extending therebetween, and a gate on the channel region. The semiconductor device may further include a body contact in the semiconductor layer and comprising a body contact dopant diffusion blocking superlattice extending through the body contact to divide the body contact into a first body contact region and an second body contact region with the second body contact region having a same conductivity and higher dopant concentration than the first body contact region. The body contact dopant diffusion blocking superlattice may include a respective plurality of stacked groups of layers, with each group of layers comprising a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 24, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10840336
    Abstract: A semiconductor device may include a semiconductor layer and at least one contact in the semiconductor layer. The contact may include at least one oxygen monolayer constrained within a crystal lattice of adjacent semiconductor portions of the semiconductor layer and spaced apart from a surface of the semiconductor layer by between one and four monolayers, and a metal layer on the surface of the semiconductor layer above the at least one oxygen monolayer. The semiconductor portion between the oxygen monolayer and the metal layer may have a dopant concentration of 1×1021 atoms/cm3 or greater.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Daniel Connelly, Marek Hytha, Hideki Takeuchi, Richard Burton, Robert J. Mears
  • Patent number: 10840388
    Abstract: A semiconductor device may include a substrate and a hyper-abrupt junction region carried by the substrate. The hyper-abrupt junction region may include a first semiconductor layer having a first conductivity type, a superlattice layer on the first semiconductor layer, and a second semiconductor layer on the superlattice layer and having a second conductivity type different than the first conductivity type. The superlattice may include stacked groups of layers, with each group of layers including stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include a first contact coupled to the hyper-abrupt junction region, and a second contact coupled to the substrate to define a varactor.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears
  • Patent number: 10840335
    Abstract: A method for making a semiconductor device may include forming spaced apart source and drain regions in a semiconductor layer with a channel region extending therebetween, and forming a gate on the channel region. The method may further include forming a body contact in the semiconductor layer and including a body contact dopant diffusion blocking superlattice extending through the body contact to divide the body contact into a first body contact region and an second body contact region with the second body contact region having a same conductivity and higher dopant concentration than the first body contact region. The body contact dopant diffusion blocking superlattice may include a respective plurality of stacked groups of layers, with each group of layers including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion, and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10840337
    Abstract: A method for making a FINFET may include forming spaced apart source and drain regions in a semiconductor fin with a channel region extending therebetween. At least one of the source and drain regions may be divided into a lower region and an upper region by a dopant diffusion blocking superlattice with the upper region having a same conductivity and higher dopant concentration than the lower region. The method may further include forming a gate on the channel region, depositing at least one metal layer on the upper region, and applying heat to move upward non-semiconductor atoms from the non-semiconductor monolayers to react with the at least one metal layer to form a contact insulating interface between the upper region and adjacent portions of the at least one metal layer.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Hideki Takeuchi, Daniel Connelly, Marek Hytha, Richard Burton, Robert J. Mears
  • Patent number: 10825901
    Abstract: A semiconductor device may include a substrate and a hyper-abrupt junction region carried by the substrate. The hyper-abrupt junction region may include a first semiconductor layer having a first conductivity type, a superlattice layer on the first semiconductor layer, and a second semiconductor layer on the superlattice layer and having a second conductivity type different than the first conductivity type. The first, second, and the superlattice layers may be U-shaped. The semiconductor device may further include a gate dielectric layer on the second semiconductor layer of the hyper-abrupt junction region, a gate electrode on the gate dielectric layer, and spaced apart source and drain regions adjacent the hyper-abrupt junction region.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: November 3, 2020
    Assignee: ATOMERA INCORPORATED
    Inventors: Richard Burton, Marek Hytha, Robert J. Mears