Patents Assigned to Attochron, LLC
-
Patent number: 12278665Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: November 12, 2024Date of Patent: April 15, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Publication number: 20250088270Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: ApplicationFiled: November 25, 2024Publication date: March 13, 2025Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12250021Abstract: The present disclosure provides systems and methods for FSO systems using active feedback noise reduction for light transmitted through a variably refractive medium. A telescope receives an inbound beam of light. A detector system includes a routing system, a noise reduction system, and a first detector. The noise reduction system has a splitter, a second detector, a controller, and a modulator. The second detector generates a sampled signal from a first portion of the inbound beam. The controller generates a control signal based on the sampled signal. The modulator attenuates a second portion of the inbound beam based on the control signal before detection by the first detector, thereby reducing variable noise caused by the variably refractive medium.Type: GrantFiled: October 22, 2024Date of Patent: March 11, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12244350Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: GrantFiled: September 11, 2024Date of Patent: March 4, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12244341Abstract: The present disclosure provides a free space optical system for optically transmitting processed radio frequency signals through a variably refractive medium. The system may include a transmitting element configured to receive a first signal and process it to generate a time-division combined signal. The transmitting element includes an optical source to generate a beam of light, a modulator to modulate the beam of light based on the time-division combined signal, and an amplifier to amplify the modulated beam of light, which is transmitted through the variably refractive medium. A receiving element includes a photoreceiver to receive the amplified beam of light and extract a second time-division combined signal, a correction unit to correct distortion in the second time-division combined signal, a mixer to multiply the corrected signal with a predetermined frequency signal, an amplifier to amplify the multiplied signal, and an antenna to emit a radio signal generated from the amplified multiplied signal.Type: GrantFiled: August 21, 2024Date of Patent: March 4, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Publication number: 20250070885Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: ApplicationFiled: November 13, 2024Publication date: February 27, 2025Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Publication number: 20250070884Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: ApplicationFiled: November 12, 2024Publication date: February 27, 2025Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12237914Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.Type: GrantFiled: January 8, 2024Date of Patent: February 25, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12206451Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.Type: GrantFiled: January 8, 2024Date of Patent: January 21, 2025Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
-
Publication number: 20250015899Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: ApplicationFiled: September 11, 2024Publication date: January 9, 2025Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12184336Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: May 28, 2024Date of Patent: December 31, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12184326Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: June 14, 2024Date of Patent: December 31, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12149290Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: June 27, 2024Date of Patent: November 19, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Publication number: 20240364424Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses each having a duration of less than 100 picoseconds. The photoreceiver may have a detection window duration of less than 1 nanosecond. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be at least three times as large as a coherence time value of the first pulse, and the detection window of the photoreceiver may be at least six times as large as the FWHM value of the temporal distribution curve.Type: ApplicationFiled: July 3, 2024Publication date: October 31, 2024Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Publication number: 20240356657Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: ApplicationFiled: April 24, 2024Publication date: October 24, 2024Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12119875Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.Type: GrantFiled: April 24, 2024Date of Patent: October 15, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12119871Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses each having a duration of less than 100 picoseconds. The photoreceiver may have a detection window duration of less than 1 nanosecond. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be at least three times as large as a coherence time value of the first pulse, and the detection window of the photoreceiver may be at least six times as large as the FWHM value of the temporal distribution curve.Type: GrantFiled: July 3, 2024Date of Patent: October 15, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12113580Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: GrantFiled: April 24, 2024Date of Patent: October 8, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Publication number: 20240333386Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: ApplicationFiled: June 14, 2024Publication date: October 3, 2024Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12095504Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses each having a duration of less than 100 picoseconds. The photoreceiver may have a detection window duration of less than 1 nanosecond. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be at least three times as large as a coherence time value of the first pulse, and the detection window of the photoreceiver may be at least six times as large as the FWHM value of the temporal distribution curve.Type: GrantFiled: February 21, 2024Date of Patent: September 17, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo