Patents Assigned to Attochron, LLC
-
Publication number: 20240267121Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: ApplicationFiled: February 21, 2024Publication date: August 8, 2024Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12052059Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: February 28, 2024Date of Patent: July 30, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 12047118Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: February 21, 2024Date of Patent: July 23, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Publication number: 20240223277Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses each having a duration of less than 100 picoseconds. The photoreceiver may have a detection window duration of less than 1 nanosecond. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be at least three times as large as a coherence time value of the first pulse, and the detection window of the photoreceiver may be at least six times as large as the FWHM value of the temporal distribution curve.Type: ApplicationFiled: February 21, 2024Publication date: July 4, 2024Applicant: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 12009867Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: November 20, 2023Date of Patent: June 11, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11996887Abstract: Systems and methods are described for transmitting information optically in free space. For instance, a system may include an optical signal generator to generate an amplified beam of light. A telescope transmits the amplified beam through the medium and receives an inbound beam of light. A detector system may include one or more (or multiple) detectors and a routing system that transmits the inbound beam to a selected set of detectors. In some cases, the system can determine a re-configuration condition based on control parameters and perform a system re-configuration to direct the inbound beam to a different set of detectors. In some cases, the system includes a remote fiber head or wavelength division multiplexing.Type: GrantFiled: January 8, 2024Date of Patent: May 28, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 11990942Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: GrantFiled: January 9, 2024Date of Patent: May 21, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 11990946Abstract: Disclosed are methods, systems and non-transitory computer readable memory for free-space optical (FSO) communications. For instance, a communications network may include FSO optical transceiver terminals located at remote electrically unpowered locations within the communications network. A remote unpowered FSO terminal located at a far-end location receives necessary optical power from a powered base station location (near-end) required for all optical amplification functions for NRZ or RZ format signals within the spectral range of 900 nm to 1480 nm as well as an Ultra Short Pulsed Laser (USPL) centered at 1560 nm at the far-end location. A transmitting node transmits an optical signal identified as a pump signal to a remote location over a free space medium, such as the atmosphere, where the remote location does not have available electrical power for operation of electro-optic components required for transmission and retransmission functions.Type: GrantFiled: April 3, 2023Date of Patent: May 21, 2024Assignee: Attochron, LLCInventors: Thomas Malcolm Chaffee, Paul F Szajowski
-
Patent number: 11973536Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: November 20, 2023Date of Patent: April 30, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11949457Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: November 20, 2023Date of Patent: April 2, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11942988Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses each having a duration of less than 100 picoseconds. The photoreceiver may have a detection window duration of less than 1 nanosecond. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be at least three times as large as a coherence time value of the first pulse, and the detection window of the photoreceiver may be at least six times as large as the FWHM value of the temporal distribution curve.Type: GrantFiled: July 19, 2023Date of Patent: March 26, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne Harvey Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 11888533Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: GrantFiled: September 29, 2023Date of Patent: January 30, 2024Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Publication number: 20230412275Abstract: Free-space optical (FSO) wireless transmission, including optical communications, remote-sensing, power beaming, etc., can be enhanced by replacing conventional laser sources that operate in the infrared portion of the optical spectrum with ultra-short pulsed laser (USPL) sources having peak pulse powers of one kWatt or greater and pulse lengths of less than one picosecond. Specifically, it has been observed that under these conditions the attenuation of an USPL beam having the same average optical power as a conventional laser in a lossy medium, such as the atmosphere, is substantially less than the attenuation of a conventional laser beam having a lower peak pulse power and/or a longer pulse width. The superior system performance when using an USPL can be translated into an increased distance between a laser source in a transmitter and a photodetector in receiver and/or a higher reliability of system operation in inclement weather conditions.Type: ApplicationFiled: August 30, 2023Publication date: December 21, 2023Applicant: Attochron, LLCInventors: Thomas Malcolm Chaffee, Paul F. Szajowski, Robert P. Fleishauer
-
Patent number: 11831354Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: August 2, 2023Date of Patent: November 28, 2023Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11831352Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: August 2, 2023Date of Patent: November 28, 2023Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11824587Abstract: Systems and methods are described for transmitting information optically. For instance, a system may include an optical source configured to generate a beam of light. The system may include at least one modulator configured to encode data on the beam of light to produce an encoded beam of light/encoded plurality of pulses. The system may include a spectrally-equalizing amplifier configured to receive the encoded beam of light/encoded plurality of pulses from the at least one modulator and both amplify and filter the encoded beam of light/encoded plurality of pulses to produce a filtered beam of light/filtered plurality of pulses, thereby spectrally equalizing a gain applied to the encoded beam of light. In some cases, the system may slice the beam of slight, to ensure a detector has impulsive detection. In some cases, the system may include a temperature controller to shift a distribution curve of wavelengths of the optical source.Type: GrantFiled: August 2, 2023Date of Patent: November 21, 2023Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox
-
Patent number: 11824588Abstract: System, method, and instrumentalities are described herein for transmitting information optically. The optical source may be configured to generate a beam. The beam may include a series of light pulses. The beam of light may be modulated. A modulator may be configured to modulate the series of light pulses in response to a data transmission signal, thereby encoding transmission data into the series of light pulses. The modulated beam of light may be received and both amplified and filtered. The filtered beam of light may be transmitted from to a detector having a photoreceiver. The photoreceiver may be configured to extract the transmission data from the filtered beam of light.Type: GrantFiled: April 20, 2023Date of Patent: November 21, 2023Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Patent number: 11777610Abstract: Free-space optical (FSO) wireless transmission, including optical communications, remote-sensing, power beaming, etc., can be enhanced by replacing conventional laser sources that operate in the infrared portion of the optical spectrum with ultra-short pulsed laser (USPL) sources having peak pulse powers of one kWatt or greater and pulse lengths of less than one picosecond. Specifically, it has been observed that under these conditions the attenuation of an USPL beam having the same average optical power as a conventional laser in a lossy medium, such as the atmosphere, is substantially less than the attenuation of a conventional laser beam having a lower peak pulse power and/or a longer pulse width. The superior system performance when using an USPL can be translated into an increased distance between a laser source in a transmitter and a photodetector in receiver and/or a higher reliability of system operation in inclement weather conditions.Type: GrantFiled: February 6, 2019Date of Patent: October 3, 2023Assignee: Attochron, LLCInventors: Thomas Malcolm Chaffee, Paul F. Szajowski, Robert P. Fleishauer
-
Patent number: 11757529Abstract: In some embodiments, an optical communication system may include an optical source, a modulator, and a photoreceiver. The optical source may be configured to generate a beam comprising a series of light pulses. The photoreceiver may have a detection window duration of 1 nanosecond or less. When a first pulse travels through a variably refractive medium, photons in the first pulse may be refracted to travel along different ray paths to arrive at the photoreceiver according to a temporal distribution curve. A full width at half maximum (FWHM) value of the temporal distribution curve may be greater than a coherence time value of the first pulse, and the detection window of the photoreceiver may be greater than the FWHM value of the temporal distribution curve.Type: GrantFiled: February 6, 2023Date of Patent: September 12, 2023Assignee: Attochron, LLCInventors: Thomas M. Chaffee, Wayne H. Knox, Alexander B. LeBon, Brian M. Gregory, Taz M. Colangelo
-
Publication number: 20230246718Abstract: Disclosed are methods, systems and non-transitory computer readable memory for free-space optical (FSO) communications. For instance, a communications network may include FSO optical transceiver terminals located at remote electrically unpowered locations within the communications network. A remote unpowered FSO terminal located at a far-end location receives necessary optical power from a powered base station location (near-end) required for all optical amplification functions for NRZ or RZ format signals within the spectral range of 900 nm to 1480 nm as well as an Ultra Short Pulsed Laser (USPL) centered at 1560 nm at the far-end location. A transmitting node transmits an optical signal identified as a pump signal to a remote location over a free space medium, such as the atmosphere, where the remote location does not have available electrical power for operation of electro-optic components required for transmission and retransmission functions.Type: ApplicationFiled: April 3, 2023Publication date: August 3, 2023Applicant: Attochron, LLCInventors: Thomas Malcolm Chaffee, Paul F Szajowski