Abstract: Alignment modules attached to a robotic tool changer assist spatial orientation and alignment of a robot arm relative to a robotic tool for location training. A three-axis spatial orientation sensor is first attached to an alignment module affixed to a tool unit. The sensor is “zeroed,” or calibrated to the spatial orientation of the tool unit. The sensor is transferred to a corresponding surface of an alignment module affixed to a master unit. The orientation of the robot arm is adjusted to eliminate sensor error signals indicating deviations from the zeroed orientation of the tool unit. An optical signal, such as a cross line laser beam, is then projected between the alignment modules. The x- and y-axis position of the robot arm is adjusted to align the optical signal with alignment markings. When the master and tool units are aligned, the robot arm is advanced in the z-axis direction until the master unit abuts the tool unit.
Abstract: A communication device that may be removably coupled to a USB port, the device having a processor and non-volatile memory and configured to execute code, including code for receiving a wireless transmission including an alert signal from a second device, where the second device is a wireless doorbell, code for sounding an alarm via an audio or visual indicator on the communication device in response to the alert signal, code for receiving input from a user and transmitting a response signal to the second device, and code for allowing two-way audio communication between the communication device and the wireless doorbell.
Abstract: Corrugated boards are creased in three stages: the first being controlled crushing of the board to force air out of the flutes; the second is applying heated moisture or mist to the board to increase pliability; and the third is creasing the board by passing it between endless conveyor belts one of which has an elongated scoring bead projecting from its inner surface.
Type:
Application
Filed:
February 8, 2016
Publication date:
August 10, 2017
Applicant:
Sun Automation, Inc.
Inventors:
Joseph J. Weishew, Ronald W. Diedeman, Joseph A. Porcella
Abstract: A modular sample store including a storage area; a service area; a transfer area; a motorized robot with a lifting device and at least one platform; and a controller. The sample store service area includes one integrally formed cubic vat module and the sample store storage area includes at least one integrally formed cubic vat module. Each one of the aforementioned vat modules includes an essentially horizontal vat floor and four joining vat walls that are connected to the vat floor and that are leaving an open vat space. The modular sample store also includes upper side walls and a cover plate to close the sample store. Each vat floor and vat wall includes an outside liner and an inside liner, which outside and inside liners in each case are separated by a clearance.
Type:
Grant
Filed:
October 19, 2009
Date of Patent:
August 8, 2017
Assignee:
Brooks Automation, Inc.
Inventors:
Johann Camenisch, Beat Reuteler, Mirko Hebenstreit, Jurg Tanner, Christian Cachelin
Abstract: A manually actuated robotic tool changer comprises master and tool units, each adapted to be connected to a different one of a robotic arm and a robotic tool. The tool changer includes a plurality of rolling members retained in one of the units and a piston mounted in one of the units and moveable in an axial direction. The piston includes a multi-faceted cam surface including an initial contact surface, a locking surface, and a failsafe surface interposed between the initial contact surface and the locking surface. When the piston is in a locked position in the tool changer, the cam surface is operative to contact the rolling members in one of the units and to urge each rolling member against a surface of the other unit to couple the master and tool units together.
Abstract: In a diagnosis method of a control valve, position data representing a position of a control valve, and pressure data representing a pressure difference over a valve actuator, and optionally travel direction of the control valve, is measured during online operation of the control valve. The position data and the pressure difference data are processed to contain data around starting points of a plurality of individual travel movements of the control valve during normal online operation of the control valve. Finally, a valve signature graph of the control valve is determined based on the processed position and pressure difference data, collected at a plurality of points along the travel range of the control valve during online operation of the control valve.
Abstract: A compliance compensator apparatus provides a mechanically compliant coupling between, e.g., a robot arm or robotic tool and a mechanical load. The compliance compensator apparatus comprise a base component and a compliance component attached to the base component and independently moveable in several aspects. The compliance component may move, with respect to the base component, axially, transversely, rotationally, and skew, in response to mechanical force from an engaged load. When the load is disengaged, the compliance compensator apparatus returns to a reset position wherein the compliance component is spaced apart from, but parallel to, the base component.
Abstract: An example rotary actuator includes a cam that is to be coupled to a valve. The cam is rotatable about an axis. The example rotary actuator also includes a linear actuator having a stem movable along a path offset from and perpendicular to the axis and a chain having a first end and a second end opposite the first end. The first end of the chain is coupled to the stem and the second end of the chain coupled to the cam. The chain is disposed around at least a portion of an outer edge of the cam, and movement of the stem along the path rotates the cam about the axis.
Type:
Grant
Filed:
November 3, 2015
Date of Patent:
July 11, 2017
Assignee:
EMERSON PROCESS MANAGEMENT, VALVE AUTOMATION, INC.
Abstract: An automated storage system for storing large quantities of samples in trays includes a storage compartment, a tray shuttle compartment abutting the storage compartment on one side and a plurality of independent modules on the other side. The modules perform processing of samples that are retrieved from the storage compartment by a tray shuttle, including extraction of selected samples from retrieved source trays and transfer of the selected samples into a separate, destination tray that can be further processed or removed from the system for use. The independent operation of the modules permits handling and processing to be performed simultaneously by different modules while the tray shuttle accesses additional samples within the storage compartment. In one embodiment, a vertical carousel is used to vertically align a desired tray with the tray shuttle, while the tray shuttle operates within a horizontal plane.
Type:
Grant
Filed:
August 27, 2012
Date of Patent:
July 11, 2017
Assignee:
Brooks Automation, Inc.
Inventors:
Robert K. Neeper, Rhett L Affleck, John E. Lillig
Abstract: A compact depalletizer including a skeleton and a subassembly. Components of the skeleton are constructed of aluminum, which provides advantages over the prior art in terms of strength, rigidity, weight, and cost. The aluminum may be pretensioned or prestressed to provide these advantages. The subassembly is preferably mounted to the side of the skeleton. The compact depalletizer is readily portable, and robotic elements of the compact depalletizer do not need to be reprogrammed after transport, so installation time is substantially reduced compared with prior art depalletizers.
Type:
Application
Filed:
November 8, 2016
Publication date:
July 6, 2017
Applicant:
ROI Industries Group, Inc. d/b/a ROI Machinery & Automation, Inc.
Abstract: Systems and methods are provided for remotely assisting an autonomous vehicle. The method includes: aggregating sensor data from the autonomous vehicle; identifying an assistance-desired scenario; generating an assistance request based on the sensor data; transmitting the assistance request to a remote assistance interface; and receiving and processing a response to the assistance request. The remote assistance interface includes a remote assistance interface that is used in generating the response to the assistance request.
Type:
Application
Filed:
January 4, 2017
Publication date:
July 6, 2017
Applicant:
Cruise Automation, Inc.
Inventors:
Ian Rust, Kyle Vogt, Solomon Bier, Drew Allyn Gross
Abstract: A method for controlling an autonomous vehicle using an external interface is disclosed. The method includes an external interface that is in operable communication with one or more control systems of the autonomous vehicle. The method allows an entity in proximity of an outside of the autonomous vehicle to interact with the external interface; receives from the entity one or more control inputs, and controls one or more operations of the autonomous vehicle based on the one or more control inputs.
Type:
Application
Filed:
January 4, 2017
Publication date:
July 6, 2017
Applicant:
Cruise Automation, Inc.
Inventors:
Kyle Vogt, Ian Rust, Solomon Bier, Drew Allyn Gross
Abstract: A system and method for providing routing instructions to one or more autonomous vehicles includes identifying a destination of an autonomous vehicle; identifying a starting position or an initial location of the autonomous vehicle; receiving autonomous vehicle sensor data; receiving one or more routing goals for a routing plan for the autonomous vehicle; generating one or more route modification parameters; and generating a route plan for the autonomous vehicle based on (a) the destination, (b) the starting position or the initial location, (c) the one or more route modification parameters and (d) the one or more routing goals.
Abstract: An automation interface is provided for interacting with industrial controllers. The automation interface provides for programming, editing, monitoring and maintenance of industrial controllers programmatically from a local or remote location. The automation interface component is adapted to communicate with industrial controllers by integrating a computer process interface library into the automation interface component. The computer process interface library exposes the automation interface component to client application processes, so that the client application processes can communicate with the at least one industrial controller programmatically. The automation interface is provided with functionality for downloading, uploading and programming of control programs to the processors of the industrial controllers.