Patents Assigned to Axcelis Technologies, Inc.
  • Patent number: 11545330
    Abstract: An ion source has an arc chamber having first and second ends and an aperture plate to enclose a chamber volume. An extraction aperture is disposed between the first and second ends. A cathode is near the first end of the arc chamber, and a repeller is near the second end. A generally U-shaped first bias electrode is on a first side of the extraction aperture within the chamber volume. A generally U-shaped second bias electrode is on a second side of the extraction aperture within the chamber volume, where the first and second bias electrodes are separated by a first distance proximate to the extraction aperture and a second distance distal from the extraction aperture. An electrode power supply provides a first and second positive voltage to the first and second bias electrodes, where the first and second positive voltages differ by a predetermined bias differential.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: January 3, 2023
    Assignee: Axcelis Technologies, Inc.
    Inventors: Wilhelm Platow, Paul Silverstein, Neil Bassom, Marvin Farley, David Sporleder
  • Patent number: 11521821
    Abstract: An ion source has an arc chamber having one or more arc chamber walls defining and interior region of the arc chamber. A cathode electrode is disposed along an axis. A repeller has a repeller shaft and a ceramic target member separated by a gap. The repeller shaft is not in electrical or mechanical contact with the target member, and the repeller shaft is configured to indirectly heat the target member. The target member, can be a cylinder encircling the repeller shaft, where the gap separates the cylinder from the repeller shaft. A top cap can enclose the cylinder can be separated from a top repeller surface of the repeller shaft by the gap. A target hole can be in the top cap. The target member can be supported by a bottom liner of the arc chamber or a support member mechanically and electrically coupled to the repeller shaft.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: December 6, 2022
    Assignee: Axcelis Technologies, Inc.
    Inventors: Steven T. Drummond, Neil Colvin, Paul Silverstein
  • Patent number: 11276543
    Abstract: A terminal for an ion implantation system is provided, wherein the terminal has a terminal housing for supporting an ion source configured to form an ion beam. A gas box within the terminal housing has a hydrogen generator configured to produce hydrogen gas for the ion source. The gas box is electrically insulated from the terminal housing, and is further electrically coupled to the ion source. The ion source and gas box are electrically isolated from the terminal housing by a plurality of electrical insulators. A plurality of insulating standoffs electrically isolate the terminal housing from an earth ground. A terminal power supply electrically biases the terminal housing to a terminal potential with respect to the earth ground. An ion source power supply electrically biases the ion source to an ion source potential with respect to the terminal potential. Electrically conductive tubing electrically couples the gas box and ion source.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 15, 2022
    Assignee: Axcelis Technologies, Inc.
    Inventors: Neil K Colvin, Tseh-Jen Hsieh, Richard Rzeszut, Wendy Colby
  • Patent number: 11244800
    Abstract: An ion source for forming a plasma has a cathode with a cavity and a cathode surface defining a cathode step. A filament is disposed within the cavity, and a cathode shield has a cathode shield surface at least partially encircling the cathode surface. A cathode gap is defined between the cathode surface and the cathode shield surface, where the cathode gap defines a tortured path for limiting travel of the plasma through the gap. The cathode surface can have a stepped cylindrical surface defined by a first cathode diameter and a second cathode diameter, where the first cathode diameter and second cathode diameter differ from one another to define the cathode step. The stepped cylindrical surface can be an exterior surface or an interior surface. The first and second cathode diameters can be concentric or axially offset.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: February 8, 2022
    Assignee: Axcelis Technologies, Inc.
    Inventors: Wilhelm Platow, Neil Bassom, Shu Satoh, Paul Silverstein, Marvin Farley
  • Patent number: 11183365
    Abstract: An ion source for an ion implantation system has a plurality of arc chambers. The ion source forms an ion beam from a respective one of the plurality of arc chambers based on a position of the respective one of the plurality of arc chambers with respect to a beamline. The arc chambers are coupled to a carrousel that translates or rotates the respective one of the plurality of arc chambers to a beamline position associated with the beamline. One or more of the plurality of arc chambers can have at least one unique feature, or two or more of the plurality of arc chambers can be generally identical to one another.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 23, 2021
    Assignee: AXCELIS TECHNOLOGIES, INC.
    Inventors: Joshua Max Abeshaus, Neil Bassom, Camilla Lambert, Caleb Wisch, Kyle Hinds, Caleb Bell
  • Patent number: 11170967
    Abstract: An ion source is configured to form an ion beam and has an arc chamber enclosing an arc chamber environment. A reservoir apparatus can be configured as a repeller and provides a liquid metal to the arc chamber environment. A biasing power supply electrically biases the reservoir apparatus with respect to the arc chamber to vaporize the liquid metal to form a plasma in the arc chamber environment. The reservoir apparatus has a cup and cap defining a reservoir environment for the liquid metal that is fluidly coupled to the arc chamber environment by holes in the cap. Features extend from the cup into the reservoir and contact the liquid metal to feed the liquid metal toward the arc chamber environment by capillary action. A structure, surface area, roughness, and material modifies the capillary action. The feature can be an annular ring, rod, or tube extending into the liquid metal.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: November 9, 2021
    Assignee: AXCELIS TECHNOLOGIES, INC.
    Inventors: Neil Bassom, Neil Colvin, Tseh-Jen Hsieh, Michael Ameen
  • Patent number: 11114330
    Abstract: A workpiece support has a support surface where one or more standoffs are selectively removably coupled to the support surface. The one or more standoffs are operable to support a workpiece at a predetermined standoff distance from the support surface. A gap may be defined between the support surface and the workpiece. The one or more standoffs may be an electrically insulative film, such as a polyimide film that is selectively removably coupled to the support surface by an adhesive. The workpiece support may be an electrostatic chuck (ESC). Electrodes positioned below the support surface may electrostatically attract the workpiece toward the support, where a gas may be introduced in the gap.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: September 7, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventors: John Baggett, Dave Shaner
  • Patent number: 11114270
    Abstract: A scanning magnet is positioned downstream of a mass resolving magnet of an ion implantation system and is configured to control a path of an ion beam downstream of the mass resolving magnet for a scanning or dithering of the ion beam. The scanning magnet has a yoke having a channel defined therein. The yoke is ferrous and has a first side and a second side defining a respective entrance and exit of the ion beam. The yoke has a plurality of laminations stacked from the first side to the second side, wherein at least a portion of the plurality of laminations associated with the first side and second side comprise one or more slotted laminations having plurality of slots defined therein.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 7, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventors: Bo Vanderberg, Edward Eisner
  • Patent number: 11062873
    Abstract: A terminal system for an ion implantation system has an ion source with a housing and extraction electrode assembly having one or more aperture plates. A gas box is electrically coupled to the ion source. A gas source is within the gas box to provide a gas at substantially the same electrical potential as the ion source assembly. A bleed gas conduit introduces the gas to a region internal to the housing of the ion source and upstream of at least one of the aperture plates. The bleed gas conduit has one or more feed-throughs extending through a body of the ion source assembly, such as a hole in a mounting flange of the ion source. The mounting flange may be a tubular portion having a channel. The bleed gas conduit can further have a gas distribution apparatus defined as a gas distribution ring. The gas distribution ring can generally encircle the tubular portion of the mounting flange.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: July 13, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventors: Neil K Colvin, Tseh-Jen Hsieh
  • Patent number: 11037754
    Abstract: An ion implantation system and method provide a non-uniform flux of a ribbon ion beam. A spot ion beam is formed and provided to a scanner, and a scan waveform having a time-varying potential is applied to the scanner. The ion beam is scanned by the scanner across a scan path, generally defining a scanned ion beam comprised of a plurality of beamlets. The scanned beam is then passed through a corrector apparatus. The corrector apparatus is configured to direct the scanned ion beam toward a workpiece at a generally constant angle of incidence across the workpiece. The corrector apparatus further comprises a plurality of magnetic poles configured to provide a non-uniform flux profile of the scanned ion beam at the workpiece.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 15, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventors: Edward Eisner, Bo Vanderberg
  • Patent number: 11011397
    Abstract: A workpiece processing system and method provides an end effector coupled to a workpiece transfer apparatus. The end effector has support members for selectively contacting and supporting a workpiece. One or more temperature sensors are coupled to the support members and are configured to contact a backside of the workpiece to measure and define one or more measured temperatures of the workpiece. A heated chuck has a support surface at a predetermined temperature, and is configured to radiate heat from the support surface. A controller control the workpiece transfer apparatus to selectively support the workpiece at a predetermined distance from the support surface of the heated chuck to radiatively heat the workpiece, and to selectively transfer the workpiece from the end effector to the support surface of the heated chuck based, at least in part, on the one or more measured temperatures.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: May 18, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventor: John Baggett
  • Patent number: 10903097
    Abstract: A thermal chuck selectively retains a workpiece on a clamping surface. The thermal chuck has one or more heaters to selectively heat the clamping surface and the workpiece. A thermal monitoring device determines a temperature of a surface of the workpiece when the workpiece resides on the clamping surface, defining one or more measured temperatures. A controller selectively energizes the one or more heaters based on the one or more measured temperatures. The thermal monitoring device may be one or more of a thermocouple or RTD in selective contact with the surface of the workpiece and an emissivity sensor or pyrometer not in contact with the surface. The thermal chuck can be part of an ion implantation system configured to implant ions into the workpiece. The controller can be further configured to control the heaters based on the measured temperatures.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: January 26, 2021
    Assignee: Axcelis Technologies, Inc.
    Inventors: John F. Baggett, Ronald N. Reece, Petros Miltiades Kopalidis
  • Patent number: 10861731
    Abstract: A workpiece processing system and method comprises transferring a workpiece to a vacuum chamber. A heated chuck is configured to selectively clamp a workpiece to a clamping surface thereof, wherein the heated chuck is configured to selectively heat the clamping surface. A workpiece transfer apparatus has an end effector configured to transfer the workpiece to the heated chuck, wherein the workpiece rests on the end effector. A controller selectively position the workpiece with respect to the heated chuck via a control of the workpiece transfer apparatus, wherein the controller is configured to position the workpiece at a predetermined distance from the clamping surface, wherein the predetermined distance generally determines an amount of radiation received by the workpiece from the heated chuck, and wherein the controller is further configured to place the workpiece on the surface of the heated chuck via a control of the workpiece transfer apparatus.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: December 8, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: John F. Baggett, Billy Benoit
  • Patent number: 10847339
    Abstract: A terminal for an ion implantation system is provided, wherein the terminal has a terminal housing for supporting an ion source configured to form an ion beam. A gas box within the terminal housing has a hydrogen generator configured to produce hydrogen gas for the ion source. The gas box is electrically insulated from the terminal housing, and is further electrically coupled to the ion source. The ion source and gas box are electrically isolated from the terminal housing by a plurality of electrical insulators. A plurality of insulating standoffs electrically isolate the terminal housing from an earth ground. A terminal power supply electrically biases the terminal housing to a terminal potential with respect to the earth ground. An ion source power supply electrically biases the ion source to an ion source potential with respect to the terminal potential. Electrically conductive tubing electrically couples the gas box and ion source.
    Type: Grant
    Filed: January 21, 2019
    Date of Patent: November 24, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: Neil K Colvin, Tseh-Jen Hsieh, Richard Rzeszut, Wendy Colby
  • Patent number: 10832926
    Abstract: An ion implantation apparatus, system, and method are provided for transferring a plurality of workpieces between vacuum and atmospheric pressures, wherein an alignment mechanism is operable to align a plurality of workpieces for generally simultaneous transportation to a dual-workpiece load lock chamber. The alignment mechanism comprises a characterization device, an elevator, and two vertically-aligned workpiece supports for supporting two workpieces. First and second atmospheric robots are configured to generally simultaneously transfer two workpieces at a time between load lock modules, the alignment mechanism, and a FOUP. Third and fourth vacuum robots are configured to transfer one workpiece at a time between the load lock modules and a process module.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: November 10, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: Joseph Ferrara, Robert J. Mitchell
  • Patent number: 10794694
    Abstract: A workpiece alignment system is provided has a light emission apparatus that directs a light beam at a plurality of wavelengths along a path at a shallow angle toward a first side of a workpiece plane at a peripheral region. A light receiver apparatus, receives the light beam on a second side opposite the first side. A rotation device selectively rotates a workpiece support. According controller determines a position of the workpiece based on an amount of the light beam received through the workpiece when the workpiece intersects the path. A sensitivity of the light receiver apparatus is controlled based on a transmissivity of the workpiece. A position of the workpiece is determined when the workpiece is rotated based on the rotational position, an amount of the light beam received, the transmissivity of the workpiece, detection of a workpiece edge, and the controlled sensitivity of the light receiver apparatus.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 6, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: John F. Baggett, Billy Thomas Benoit, Joe Ferrara, Brian Terry
  • Patent number: 10774419
    Abstract: An ion implantation system is provided having an ion source configured to form an ion beam from aluminum iodide. A beamline assembly selectively transports the ion beam to an end station configured to accept the ion beam for implantation of aluminum ions into a workpiece. The ion source has a solid-state material source having aluminum iodide in a solid form. A solid source vaporizer vaporizes the aluminum iodide, defining gaseous aluminum iodide. An arc chamber forms a plasma from the gaseous aluminum iodide, where arc current from a power supply is configured to dissociate aluminum ions from the aluminum iodide. One or more extraction electrodes extract the ion beam from the arc chamber. A water vapor source further introduces water to react residual aluminum iodide to form hydroiodic acid, where the residual aluminum iodide and hydroiodic acid is evacuated from the system.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 15, 2020
    Assignee: Axcelis Technologies, Inc
    Inventors: Dennis Elliott Kamenitsa, Richard J. Rzeszut, Fernando M. Silva, Jason R. Beringer, Xiangyang Wu
  • Patent number: 10720354
    Abstract: A workpiece alignment system has a light emission apparatus to direct a beam of light toward a first side of a workpiece through a first polarizer apparatus. A light receiver apparatus positioned on a second side of the workpiece receives the beam of light through a second polarizer apparatus between the workpiece and the light receiver apparatus. A workpiece support supports the workpiece. A rotation device selectively supports and rotates the workpiece support about a support axis. A controller determines a position of the workpiece based on an amount of the beam of light received by the light receiver apparatus. The controller determines a position of the workpiece when the workpiece is supported and rotated based, at least in part, on a rotational position of the workpiece support and at least a portion of the beam of light received by the light receiver apparatus.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: July 21, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventor: Neil James Bassom
  • Patent number: 10714317
    Abstract: A workpiece processing system has a chamber with one or more chamber walls defining surfaces enclosing a chamber volume. One or more chamber wall heaters selectively heat the chamber walls to a chamber wall temperature. A workpiece support within the chamber selectively supports a workpiece having one or more materials having a respective condensation temperature, above which, the one or more materials are respectively in a gaseous state. A heater apparatus selectively heats the workpiece to a predetermined temperature. A controller heats the workpiece to the predetermined temperature by controlling the heater apparatus, heating the one or more materials to respectively form one or more outgassed materials within the chamber volume.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: July 14, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventor: John F. Baggett
  • Patent number: 10714296
    Abstract: An ion implantation system including an ion source for use in creating an ion beam is disclosed. The ion source has an ion source arc chamber housing that confines a high density concentration of ions within the chamber housing. An extraction member defining an appropriately configured extraction aperture allows ions to exit the source arc chamber. In a preferred embodiment, the extraction member defines a tailored extraction aperture shape for modifying an ion beam profile and producing a substantially uniform beam current across a dimension of the ion beam. The extraction aperture member defines an aperture in the form of an elongated slit having a width that varies, with wide ends and a narrow middle. The midsection of the extraction aperture has a narrower width than the opposite end sections.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Axcelis Technologies, Inc.
    Inventors: Patrick T. Heres, Denis A. Robitaille