Patents Assigned to Axsun Technologies, Inc.
  • Patent number: 10855053
    Abstract: A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is bonded to the active region. This allows for a separate electrostatic cavity that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: December 1, 2020
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Mark E. Kuznetsov, Walid A. Atia, Bartley C. Johnson
  • Patent number: 10488177
    Abstract: An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: November 26, 2019
    Assignee: Axsun Technologies, Inc.
    Inventor: Dale C. Flanders
  • Patent number: 10393502
    Abstract: Real-time swept source OCT data is most often sampled using a specially cut hardware k-clock. The present invention involves mathematically resampling signals within an FPGA-based data acquisition board based on data sampled from a wide free spectral range reference interferometer. The FPGA can then multiply up the reference clock rate to achieve greater imaging depth. The Nyquist fold-over depth can thus be programmed from a standard reference to an arbitrary depth, much as PLL frequency synthesizer can produce many frequencies from a standard stable reference. The system is also capable of real-time performance.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: August 27, 2019
    Assignee: AXSUN TECHNOLOGIES, INC.
    Inventors: Bartley C. Johnson, Noble G. Larson, Brian Goldberg, Mark E. Kuznetsov
  • Patent number: 10371499
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a mode locked condition. This is accomplished by synchronously changing the laser cavity's gain and/or phase based on the round trip travel time of light in the cavity. Many high-speed wavelength swept laser sources emit pulses synchronized with the round trip time of the cavity as part of a nonlinear optical frequency red shifting process. Stable pulsation is associated with smooth tuning and low relative intensity noise. Addition of mode-locking methods to this class of lasers can control and stabilize these lasers to a low clock jitter and RIN state, and in specific cases allow long-to-short wavelength tuning in addition to the usual short-to-long (red shifting). The laser may comprise a SOA (410), a tunable Fabry-Perot-Filter (412) as one reflector and an Output coupler (405) in an optical fiber (406) to adjust the cavity length.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 6, 2019
    Assignee: AXSUN TECHNOLOGIES, INC.
    Inventors: Bartley C. Johnson, Dale C. Flanders
  • Patent number: 10359551
    Abstract: The present invention concerns the use of hybrid metal-dielectric optical coatings as the end reflectors of laser cavities and/or in the mirror structures used in other optical resonators, such as Fabry-Perot tunable filters, along with the use of such Fabry-Perot tunable filters in wavelength swept sources such as lasers. Hybrid metal-dielectric optical coatings have reflectivity spectra that can be broader than pure dielectric coatings, offer optical reflectivities higher than metal, as high as pure dielectric coatings, eliminate mirror transmission that can cause parasitic light reflections, and use fewer layers and thus have lower mass and higher mechanical resonant frequency for movable mirror applications An important characteristic of these coatings concerns the non-reflected light. Pure dielectric coatings offer high reflectivity, while the non-reflected portion of the light is transmitted by the coating to the substrate, for example.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: July 23, 2019
    Assignee: Axsun Technologies, Inc.
    Inventors: Mark E. Kuznetsov, Ranko Galeb
  • Patent number: 10184783
    Abstract: A frequency swept laser source for TEFD-OCT imaging includes an integrated clock subsystem on the optical bench with the laser source. The clock subsystem generates frequency clock signals as the optical signal is tuned over the scan band. Preferably the laser source further includes a cavity extender in its optical cavity between a tunable filter and gain medium to increase an optical distance between the tunable filter and the gain medium in order to control the location of laser intensity pattern noise. The laser also includes a fiber stub that allows for control over the cavity length while also controlling birefringence in the cavity.
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: January 22, 2019
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov, Carlos R. Melendez
  • Patent number: 10161738
    Abstract: An optical coherence tomography system utilizes an optical swept laser that has cavity length compensator that changes an optical length of the laser cavity for different optical frequencies to increase the length of the laser cavity for lower optical frequencies. Specifically, a spectral separation between longitudinal cavity modes of the laser cavity is shortened or alternatively lengthened as a passband of a cavity tuning element sweeps through a scanband of the swept optical signal. In some examples, the compensator is implemented as two gratings. In others, it is implemented as a chirped grating device.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: December 25, 2018
    Assignee: Axsun Technologies, Inc.
    Inventors: Bartley C. Johnson, Dale C. Flanders
  • Patent number: 10109979
    Abstract: A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is bonded to the active region. This allows for a separate electrostatic cavity that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 23, 2018
    Assignee: AXSUN TECHNOLOGIES, INC.
    Inventors: Dale C. Flanders, Mark E. Kuznetsov, Walid A. Atia, Bartley C. Johnson
  • Patent number: 9874740
    Abstract: A Fabry-Perot tunable filter comprises a membrane device. The membrane device includes a support structure having an optical port. Also, the membrane device has an optical membrane structure separated from the support structure over the optical port. The optical membrane structure includes a center body portion and an outer body portion. Tethers extend radially from the center body portion to the outer body portion of the optical membrane structure. The center body portion has an area that is about equal or smaller than the area of the optical port.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 23, 2018
    Assignee: Axsun Technologies, Inc.
    Inventors: Vaibhav Mathur, Peter S. Whitney, James W. Getz
  • Patent number: 9869542
    Abstract: A system and method for resampling interference datasets of samples in segments, in a swept-source based Optical Coherence Tomography (OCT) system. The resampling is preferably performed within a Field Programmable Gate Array (FPGA) of the OCT system, the FPGA preferably having Fourier-transform based signal processing capabilities such as Fast Fourier Transform (FFT) cores. Resampling the interference datasets in segments provides a flexible approach to resampling that makes efficient use of system resources such as FFT cores. By resampling the interference datasets in segments, the system adjusts to an increased number of resampling points as the imaging depth upon the sample increases. The OCT system then combines the segments using overlapping values of the resampling points between adjacent resampling regions of the resampled segments, and performs Fourier Transform based post-processing on the combined segments to obtain axial profiles of the sample at desired imaging depths.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: January 16, 2018
    Assignee: Axsun Technologies, Inc.
    Inventors: Brian Goldberg, Bartley C. Johnson
  • Patent number: 9800019
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: October 24, 2017
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Randal A. Murdza, Peter S. Whitney
  • Patent number: 9791261
    Abstract: A frequency swept laser source for TEFD-OCT imaging includes an integrated clock subsystem on the optical bench with the laser source. The clock subsystem generates frequency clock signals as the optical signal is tuned over the scan band. Preferably the laser source further includes a cavity extender in its optical cavity between a tunable filter and gain medium to increase an optical distance between the tunable filter and the gain medium in order to control the location of laser intensity pattern noise. The laser also includes a fiber stub that allows for control over the cavity length while also controlling birefringence in the cavity.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: October 17, 2017
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov, Carlos R. Melendez
  • Patent number: 9048614
    Abstract: Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PLF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: June 2, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Peter S. Whitney, Dale C. Flanders
  • Patent number: 9041936
    Abstract: An integrated swept wavelength tunable optical source uses a narrowband filtered broadband signal with an optical amplifier and self-tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal. The self-tracking arrangement is used where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 26, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 9036235
    Abstract: An optical membrane device comprises a substrate, at least one support block on a surface of the substrate, and at least one plate. A torsion beam supports the plate above the substrate on the support block. The optical membrane device also includes an optical membrane structure supported by the plate above the substrate and at least one electrode on the substrate underneath the plate. In one implementation, the optical membrane device further comprises a tether for coupling the optical membrane structure to the plate. The tether extends between the optical membrane structure and the plate. In another implementation, the substrate of the optical membrane device has an optical port through the substrate directly below the optical membrane structure. The plate is substantially balanced around the torsion beam to minimize a sensitivity to orientation in a gravitational field.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: May 19, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Vaibhav Mathur, Dale C. Flanders, Peter S. Whitney, James W. Getz
  • Patent number: 8994954
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Randal A. Murdza, Peter S. Whitney
  • Patent number: 8922782
    Abstract: An optical coherence tomography system uses an optical source that comprises a series of gain waveguides that generate light at the frequencies at which the interference signal is to be sampled. In this way, the optical source generates a discretely tuned optical signal. This has the advantage that the tuning can be directly controlled by a controller that is also used to synchronize the sampling of the interference signal. This avoids the need for separate frequency clock synchronization. In embodiments, the gain waveguides are fabricated from one or more semiconductor edge emitting bars. In some implementations, the gain waveguides comprise periodic structures that define the frequency of operation of the waveguide. However in other implementations, the combiner comprises a dispersive element, such as a diffractive grating, that provides frequency specific feedback to each waveguide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Axsun Technologies, Inc.
    Inventor: Dale C. Flanders
  • Patent number: 8836953
    Abstract: An OCT system and particularly its clock system generates a k-clock signal but also generates an optical frequency reference sweep signal that, for example, indicates the start of the sweep or an absolute frequency reference associated with the sweep at least for the purposes of sampling of the interference signal and/or processing of that interference signal into the OCT images. This optical frequency reference sweep signal is generated at exactly the same frequency of the swept optical signal from sweep to sweep of that signal. This ensures that the sampling of the interference signal occurs at the same frequencies, sweep to sweep. Such a system is relevant to a number of applications in which it is important that successive sweeps of the swept optical signal be very stable with respect to each other.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: September 16, 2014
    Assignee: Axsun Technologies, Inc.
    Inventor: Bartley C. Johnson
  • Patent number: 8781287
    Abstract: An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: July 15, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, James W. Getz, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov
  • Publication number: 20140185054
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a stable mode locked condition by modulating a drive current to the semiconductor optical amplifier as function of wavelength or synchronously with the drive voltage of the laser's tunable element based on stability map for the laser.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Walid A. Atia, Randal A. Murdza, Peter S. Whitney