Patents Assigned to Axsun Technologies, Inc.
  • Publication number: 20140176958
    Abstract: A microelectromechanical systems (MEMS)-tunable vertical-cavity surface-emitting laser (VCSEL) in which the MEMS mirror is a bonded to the active region. This allows for a separate electrostatic cavity, that is outside the laser's optical resonant cavity. Moreover, the use of this cavity configuration allows the MEMS mirror to be tuned by pulling the mirror away from the active region. This reduces the risk of snap down. Moreover, since the MEMS mirror is now bonded to the active region, much wider latitude is available in the technologies that are used to fabricate the MEMS mirror. This is preferably deployed as a swept source in an optical coherence tomography (OCT) system.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Dale C. Flanders, Mark E. Kuznetsov, Walid A. Atia, Bartley C. Johnson
  • Publication number: 20140168658
    Abstract: An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal to form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm.
    Type: Application
    Filed: January 21, 2014
    Publication date: June 19, 2014
    Applicant: Axsun Technologies, Inc.
    Inventors: Bartley C. Johnson, Walid A. Atia, Mark E. Kuznetsov, Dale C. Flanders
  • Publication number: 20140163392
    Abstract: An intravascular sensor system including an array of pressure and/or temperature sensors for detecting pressure and/temperature. In one example, the sensors are interrogated with an optical catheter. In this example, the swept source is able to acquire both image and pressure/temperature data of a patient's vessel or artery. In another example, the intravascular pressure sensor system has a sheath embedded with pressure sensors in the sheath wall. Other examples include the process of making and using the intravascular pressure sensor system.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventor: Dale C. Flanders
  • Publication number: 20140152997
    Abstract: An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal for form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm. In embodiments, the swept sources are tunable lasers that have shared laser cavities.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: Axsun Technologies, Inc.
    Inventors: Brian Goldberg, Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov
  • Publication number: 20140125986
    Abstract: An OCT system and particularly its clock system generates a k-clock signal but also generates an optical frequency reference sweep signal that, for example, indicates the start of the sweep or an absolute frequency reference associated with the sweep at least for the purposes of sampling of the interference signal and/or processing of that interference signal into the OCT images. The clock system is also tunable to allow the control or flexibility over the relationship between the scanning of the swept optical signal and the sampling of the interference signal by the data acquisition system. Specifically, the absolute frequencies of the swept optical signal at which the k-clock signals are generated can be adjusted. Also, the absolute frequency of the swept optical signal at which sampling of the interference signal is initiated can also be changed or stabilized. Moreover, optical frequency sampling interval defined by the k-clock signal can be changed under user control or simply stabilized.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: Axsun Technologies, Inc.
    Inventors: Bartley C. Johnson, Dale C. Flanders
  • Publication number: 20140125991
    Abstract: An OCT system and particularly its clock system generates a k-clock signal but also generates an optical frequency reference sweep signal that, for example, indicates the start of the sweep or an absolute frequency reference associated with the sweep at least for the purposes of sampling of the interference signal and/or processing of that interference signal into the OCT images. This optical frequency reference sweep signal is generated at exactly the same frequency of the swept optical signal from sweep to sweep of that signal. This ensures that the sampling of the interference signal occurs at the same frequencies, sweep to sweep. Such a system is relevant to a number of applications in which it is important that successive sweeps of the swept optical signal be very stable with respect to each other. One specific example is phase sensitive OCT. This requires that the sampling of the interference signal occurs at exactly the same frequency/wavelength on every axial line (A-line).
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventor: Bartley C. Johnson
  • Publication number: 20140125987
    Abstract: An optical detector system comprises a hermetic optoelectronic package, an optical bench installed within the optoelectronic package, a balanced detector system installed on the optical bench. The balanced detector system includes at least two optical detectors that receive interference signals. An electronic amplifier system installed within the optoelectronic package amplifies an output of at least two optical detectors. Also disclosed is an integrated optical coherence tomography system. Embodiments are provided in which the amplifiers, typically transimpedance amplifiers, are closely integrated with the optical detectors that detect the interference signals from the interferometer. Further embodiments are provided in which the interferometer but also preferably its detectors are integrated together on a common optical bench. Systems that have little or no optical fiber can thus be implemented.
    Type: Application
    Filed: March 28, 2013
    Publication date: May 8, 2014
    Applicant: Axsun Technologies, Inc.
    Inventor: Axsun Technologies, Inc.
  • Patent number: 8687666
    Abstract: An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal for form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm. In embodiments, the swept sources are tunable lasers that have shared laser cavities.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 1, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Brian Goldberg, Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov
  • Publication number: 20140085639
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a mode locked condition. This is accomplished by synchronously changing the laser cavity's gain and/or phase based on the round trip travel time of light in the cavity. Many high-speed wavelength swept laser sources emit pulses synchronized with the round trip time of the cavity as part of a nonlinear optical frequency red shifting process. Stable pulsation is associated with smooth tuning and low relative intensity noise. Addition of mode-locking methods to this class of lasers can control and stabilize these lasers to a low clock jitter and RIN state, and in specific cases allow long-to-short wavelength tuning in addition to the usual short-to-long (red shifting). The laser may comprise a SOA (410), a tunable Fabry-Perot-Filter (412) as one reflector and an Output coupler (405) in an optical fiber (406) to adjust the cavity length.
    Type: Application
    Filed: December 27, 2011
    Publication date: March 27, 2014
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Bartley C. Johnson, Dale C. Flanders
  • Patent number: 8675293
    Abstract: An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for a forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: March 18, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, James W. Getz, Peter S. Whitney, Mark E. Kuznetsov, Christopher C. Cook
  • Patent number: 8670129
    Abstract: An integrated swept wavelength optical source uses a filtered ASE signal with an optical amplifier and tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a first tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal, and a second tunable Fabry Perot filter, installed on the bench, for spectrally filtering the amplified tunable signal from the amplifier. A self-tracking arrangement is also possible where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 11, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Patent number: 8665450
    Abstract: An optical coherence analysis system comprising: a first swept source that generates a first optical signal that is tuned over a first spectral scan band, a second swept source that generates a second optical signal that is tuned over a second spectral scan band, a combiner for combining the first optical signal and the second optical signal to form a combined optical signal, an interferometer for dividing the combined optical signal between a reference arm leading to a reference reflector and a sample arm leading to a sample, and a detector system for detecting an interference signal generated from the combined optical signal from the reference arm and from the sample arm.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: March 4, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Bartley C. Johnson, Walid A. Atia, Mark E. Kuznetsov, Dale C. Flanders
  • Patent number: 8660164
    Abstract: Dry oxygen, dry air, or other gases such as ozone are hermetically sealed within the package of the external cavity laser or ASE swept source to avoid packaging-induced failure or PIF. PIF due to hydrocarbon breakdown at optical interfaces with high power densities is believed to occur at the SLED and/or SOA facets as well as the tunable Fabry-Perot reflector/filter elements and/or output fiber. Because the laser is an external cavity tunable laser and the configuration of the ASE swept sources, the power output can be low while the internal power at surfaces can be high leading to PIF at output powers much lower than the 50 mW.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 25, 2014
    Assignee: Axsun Technologies, Inc.
    Inventors: Peter S. Whitney, Dale C. Flanders
  • Publication number: 20140016135
    Abstract: A frequency swept laser source for TEFD-OCT imaging includes an integrated clock subsystem on the optical bench with the laser source. The clock subsystem generates frequency clock signals as the optical signal is tuned over the scan band. Preferably the laser source further includes a cavity extender in its optical cavity between a tunable filter and gain medium to increase an optical distance between the tunable filter and the gain medium in order to control the location of laser intensity pattern noise. The laser also includes a fiber stub that allows for control over the cavity length while also controlling birefringence in the cavity.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 16, 2014
    Applicant: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Bartley C. Johnson, Mark E. Kuznetsov, Carlos R. Melendez
  • Publication number: 20130321820
    Abstract: An integrated swept wavelength tunable optical source uses a narrowband filtered broadband signal with an optical amplifier and self-tracking filter. This source comprises a micro optical bench, a source for generating broadband light, a tunable Fabry Perot filter, installed on the bench, for spectrally filtering the broadband light from the broadband source to generate a narrowband tunable signal, an amplifier, installed on the bench, for amplifying the tunable signal. The self-tracking arrangement is used where a single tunable filter both generates the narrowband signal and spectrally filters the amplified signal. In some examples, two-stage amplification is provided. The use of a single bench implementation yields a low cost high performance system. For example, polarization control between components is no longer necessary.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Walid A. Atia, Mark E. Kuznetsov
  • Publication number: 20130314794
    Abstract: A Fabry-Perot tunable filter comprises a membrane device. The membrane device includes a support structure having an optical port. Also, the membrane device has an optical membrane structure separated from the support structure over the optical port. The optical membrane structure includes a center body portion and an outer body potion. Tethers extend radially from the center body portion to the outer body portion of the optical membrane structure. The center body portion has an area that is about equal or smaller than the area of the optical port.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 28, 2013
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Vaibhav Mathur, Peter S. Whitney, James W. Getz
  • Publication number: 20130305513
    Abstract: An optical probe for emitting and/or receiving light within a body comprises an optical fiber that transmits and/or receives an optical signal, a silicon optical bench including a fiber groove running longitudinally that holds an optical fiber termination of the optical fiber and a reflecting surface that optically couples an endface of the optical fiber termination to a lateral side of the optical bench. The fiber groove is fabricated using silicon anisotropic etching techniques. Some examples use a housing around the optical bench that is fabricated using LIGA or other electroforming technology. A method for forming lens structure is also described that comprises forming a refractive lens in a first layer of a composite wafer material, such as SOI (silicon on insulator) wafers and forming an optical port through a backside of the composite wafer material along an optical axis of the refractive lens. The refractive lens is preferably formed using grey-scale lithography and dry etching the first layer.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 21, 2013
    Applicant: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, James W. Getz, Walid A. Atia, Peter S. Whitney, Mark E. Kuznetsov
  • Publication number: 20130308136
    Abstract: An optical coherence analysis system uses a laser swept source that is constrained to operate in a mode locked condition using regenerative mode-locking This is accomplished by synchronously changing the laser cavity's net gain and/or phase based on time varying intensity of the swept optical signal generated by the laser. This produces a stable pulsation behavior, which is associated with smooth tuning (low optical frequency reference clock jitter) and low relative intensity noise (RIN).
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Mark E. Kuznetsov, Bartley C. Johnson
  • Publication number: 20130301098
    Abstract: An optical membrane device comprises a substrate, at least one support block on a surface of the substrate, and at least one plate. A torsion beam supports the plate above the substrate on the support block. The optical membrane device also includes an optical membrane structure supported by the plate above the substrate and at least one electrode on the substrate underneath the plate. In one implementation, the optical membrane device further comprises a tether for coupling the optical membrane structure to the plate. The tether extends between the optical membrane structure and the plate. In another implementation, the substrate of the optical membrane device has an optical port through the substrate directly below the optical membrane structure. The plate is substantially balanced around the torsion beam to minimize a sensitivity to orientation in a gravitational field.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: AXSUN TECHNOLOGIES, INC.
    Inventors: Vaibhav Mathur, Dale C. Flanders, Peter S. Whitney, James W. Getz
  • Patent number: RE44605
    Abstract: Integrated spectroscopy systems are disclosed. In some examples, integrated tunable detectors, using one or multiple Fabry-Perot tunable filters, are provided. Other examples use integrated tunable sources. The tunable source combines one or multiple diodes, such as superluminescent light emitting diodes (SLED), and a Fabry Perot tunable filter or etalon. The advantages associated with the use of the tunable etalon are that it can be small, relatively low power consumption device. For example, newer microelectrical mechanical system (MEMS) implementations of these devices make them the size of a chip. This increases their robustness and also their performance. In some examples, an isolator, amplifier, and/or reference system is further provided integrated.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: November 19, 2013
    Assignee: Axsun Technologies, Inc.
    Inventors: Walid A. Atia, Dale C. Flanders, Petros Kotidis, Mark E. Kuznetsov