Patents Assigned to Ayar Labs, Inc.
  • Patent number: 12276833
    Abstract: A strip-loaded optical waveguide includes a slab layer, a strip layer, and a cladding region. The slab layer has a first optical refractive index and a first width measured in a transverse direction that is perpendicular to a light propagation direction through the strip-loaded optical waveguide. The strip layer is disposed above the slab layer. The strip layer has a second optical refractive index and a second width as measured the transverse direction. The second width is less than the first width of the slab layer. The second optical refractive index is less than the first optical refractive index of the slab layer. The cladding region is disposed above the slab layer and above the strip layer. The cladding region has a third optical refractive index that is less than the second optical refractive index of the strip layer.
    Type: Grant
    Filed: March 19, 2023
    Date of Patent: April 15, 2025
    Assignee: Ayar Labs, Inc.
    Inventor: Manan Raval
  • Patent number: 12265263
    Abstract: An optical grating coupler includes a primary layer formed of a material having a first refractive index. A first plurality of scattering elements is formed within the primary layer. The first plurality of scattering elements has a second refractive index that is different than the first refractive index. A secondary layer is formed over the primary layer. The secondary layer is formed of a material having a third refractive index. A second plurality of scattering elements is formed within the secondary layer. The second plurality of scattering elements has a fourth refractive index that is different than the third refractive index. The fourth refractive index is different than the second refractive index. At least some of the second plurality of scattering elements at least partially overlap corresponding ones of the first plurality of scattering elements.
    Type: Grant
    Filed: December 31, 2021
    Date of Patent: April 1, 2025
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Uma Krishnamoorthy
  • Patent number: 12216312
    Abstract: An optical input polarization management device includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization so as to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Light within the first and second OW's is input to a first two-by-two optical splitter (2×2OS). A first phase shifter (PS) is interfaced with either the first or second OW. Light is output from the first 2×2OS into a third OW and a fourth OW. Light within the third and fourth OW's is input to a second 2×2OS. A second PS is interfaced with either the third or fourth OW. Light is output from the second 2×2OS into a fifth OW for further processing.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: February 4, 2025
    Assignee: Ayar Labs, Inc.
    Inventors: Pavan Bhargava, Derek Van Orden, Mark Wade, John Fini, Chen Sun, Milos Popovic, Anatol Khilo
  • Patent number: 12164160
    Abstract: An optical data communication system includes an optical transmitter and an optical receiver. A polarization-maintaining optical data communication link extends from an optical output of the optical transmitter to an optical input of the optical receiver. The polarization-maintaining optical data communication link includes at least two sections of polarization-maintaining optical fiber optically connected through an optical connector. The at least two sections of polarization-maintaining optical fiber have different lengths. The optical connector is configured to optically align a fast polarization axis of a first polarization-maintaining optical fiber to a slow polarization axis of a second polarization-maintaining optical fiber. The optical connector is also configured to optically align a slow polarization axis of the first polarization-maintaining optical fiber to a fast polarization axis of the second polarization-maintaining optical fiber.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: December 10, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Chen Sun
  • Patent number: 12153293
    Abstract: An optical waveguide includes a core region extending substantially along a lengthwise centerline of the optical waveguide, a first cladding region formed along a first side of the core region, and a second cladding region formed along a second side of the core region. The optical waveguide includes a first diode segment and a second diode segment that each include respective portions of the core region, the first cladding region, and the second cladding region. The second diode segment is contiguous with the first diode segment. The first diode segment forms a first diode across the optical waveguide such that a first intrinsic electric field extends across the first diode segment in a first direction, and the second diode segment forms a second diode across the optical waveguide such that a second intrinsic electric field extends across the second diode segment in a second direction opposite the first direction.
    Type: Grant
    Filed: August 21, 2023
    Date of Patent: November 26, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Derek M. Kita, Anatol Khilo, Dries Vercruysse, Neil Sapra, John M. Fini
  • Patent number: 12136678
    Abstract: A photodetector includes a photodiode that has a germanium junction formed between an n-doped region and a p-doped region. The germanium junction is formed to have an input interface at a light input end of the germanium junction. The input interface has a substantially flat shape or a convex-faceted shape. The photodetector also includes an input waveguide connected to the input interface of the germanium junction. The input waveguide has a substantially linear shape along a lengthwise centerline of the input waveguide. The input waveguide is oriented so that the lengthwise centerline of the input waveguide is positioned at a non-zero angle relative to input interface of the germanium junction.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: November 5, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Dries Vercruysse, John M. Fini
  • Patent number: 12092880
    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: September 17, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Derek Van Orden, Mark Wade
  • Patent number: 12072532
    Abstract: An electro-optic combiner includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Each of the first and second OW's has a respective combiner section. The first and second OW combiner sections extend parallel to each other and have opposite light propagation directions. A plurality of ring resonators is disposed between the combiner sections of the first and second OW's and within an evanescent optically coupling distance of both the first and second OW's. Each of ring resonators operates at a respective resonant wavelength to optically couple light from the combiner section of the first OW into the combiner section of the second OW.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: August 27, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Pavan Bhargava, Derek Van Orden, Mark Wade, John Fini, Chen Sun, Milos Popovic, Anatol Khilo
  • Patent number: 12057332
    Abstract: A photoresist material is deposited, patterned, and developed on a backside of a wafer to expose specific regions on the backside of chips for etching. These specific regions are etched to form etched regions through the backside of the chips to a specified depth within the chips. The specified depth may correspond to an etch stop material. Etching of the backside of the wafer can also be done along the chip kerf regions to reduce stress during singulation/dicing of individual chips from the wafer. Etching of the backside of the chips can be done with the chips still part of the intact wafer. Or, the wafer having the pattered and developed photoresist on its backside can be singulated/diced before etching through the backside of the individual chips. The etched region(s) formed through the backside of a chip can be used for attachment of optical component(s) to the chip.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: August 6, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Chen Sun, Roy Edward Meade, Mark Wade, Alexandra Wright, Vladimir Stojanovic
  • Patent number: 12019269
    Abstract: A multi-chip package assembly includes a substrate, a first semiconductor chip attached to the substrate, and a second semiconductor chip attached to the substrate, such that a portion of the second semiconductor chip overhangs an edge of the substrate. A first v-groove array for receiving a plurality of optical fibers is present within the portion of the second semiconductor chip that overhangs the edge of the substrate. An optical fiber assembly including the plurality of optical fibers is positioned and secured within the first v-groove array of the second semiconductor chip. The optical fiber assembly includes a second v-groove array configured to align the plurality of optical fibers to the first v-groove array of the second semiconductor chip. An end of each of the plurality of optical fibers is exposed for optical coupling within an optical fiber connector located at a distal end of the optical fiber assembly.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: June 25, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chong Zhang, Haiwei Lu, Chen Li
  • Patent number: 12014962
    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
    Type: Grant
    Filed: July 3, 2023
    Date of Patent: June 18, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Anatol Khilo, Forrest Sedgwick, Alexandra Wright
  • Patent number: 11994724
    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.
    Type: Grant
    Filed: February 14, 2022
    Date of Patent: May 28, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Alexandra Wright, Mark Wade, Chen Sun, Vladimir Stojanovic, Rajeev Ram, Milos Popovic, Roy Edward Meade, Derek Van Orden
  • Patent number: 11988881
    Abstract: A first portion of incoming light and a second portion of incoming light travel in opposite directions within a first optical waveguide. A ring resonator in-couples the first portion of incoming light and the second portion of incoming light from the first optical waveguide, such that the first portion of incoming light and the second portion of incoming light travel in opposite directions within the ring resonator. A second optical waveguide is disposed to in-couple the first portion of incoming light and the second portion of incoming light couple from the ring resonator, such that the first portion of incoming light and the second portion of incoming light travel in opposite directions within the second optical waveguide away from the ring resonator. One or more photodetector(s) are optically connected to receive the first portion of incoming light and the second portion of incoming light from the second optical waveguide.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: May 21, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Anatol Khilo, Chen Sun, Pavan Bhargava, Chandarasekaran Ramamurthy
  • Patent number: 11982887
    Abstract: A thermo-optic phase shifter includes a substrate having a cavity formed into an upper region of the substrate. The thermo-optic phase shifter includes an optical waveguide disposed above the substrate. The optical waveguide extends across and above the cavity. The thermo-optic phase shifter also includes a heater device disposed along a lateral side of the optical waveguide. The heater device extends across and above the cavity. The cavity is formed by an undercut etching process after the optical waveguide and the heater device is formed. The optical waveguide can be formed to include one or more segments that pass over the cavity. Also, a second heater device can be included such that the one or more segments of the optical waveguide that extend over the cavity are bracketed by heater devices. Thermal transmission structures can be included to enhance heat transfer between the heater device(s) and the optical waveguide.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: May 14, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Sidney Buchbinder, John Fini, Anatol Khilo
  • Patent number: 11914203
    Abstract: A substrate includes a first area in which a laser array chip is disposed. The substrate includes a second area in which a planar lightwave circuit is disposed. The second area is elevated relative to the first area. A trench is formed in the substrate between the first area and the second area. The substrate includes a third area in which an optical fiber alignment device is disposed. The third area is located next to and at a lower elevation than the second area within the substrate. The planar lightwave circuit has optical inputs facing toward and aligned with respective optical outputs of the laser array chip. The planar lightwave circuit has optical outputs facing toward the third area. The optical fiber alignment device is configured to receive optical fibers such that optical cores of the optical fibers respectively align with the optical outputs of the planar lightwave circuit.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: February 27, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Michael Davenport, Mark Wade, Chong Zhang
  • Patent number: 11916602
    Abstract: A remote memory system includes a substrate of a multi-chip package, an integrated circuit chip connected to the substrate, and an electro-optical chip connected to the substrate. The integrated circuit chip includes a high-bandwidth memory interface. An electrical interface of the electro-optical chip is electrically connected to the high-bandwidth memory interface. A photonic interface of the electro-optical chip is configured to optically connect with an optical link. The electro-optical chip includes at least one optical macro that converts outgoing electrical data signals received through the electrical interface from the high-bandwidth interface into outgoing optical data signals. The optical macro transmits the outgoing optical data signals through the photonic interface to the optical link. The optical macro also converts incoming optical data signals received through the photonic interface into incoming electrical data signals.
    Type: Grant
    Filed: February 14, 2021
    Date of Patent: February 27, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Vladimir Stojanovic, Chen Sun, Mark Wade, Hugo Saleh, Charles Wuischpard
  • Patent number: 11899251
    Abstract: A vertical integrated photonics chiplet assembly includes a package substrate and an external device connected to a top surface of the package substrate. A photonics chip is disposed within the package substrate. The photonics chip includes optical coupling devices positioned at a top surface of the photonics chip. A plurality of conductive via structures are disposed within the package substrate in electrical connection with electrical circuits within the photonics chip. The plurality of conductive via structures are electrically connected through the package substrate to the external device. An opening is formed through the top surface of the substrate to expose a portion of the top surface of the photonics chip at which the optical coupling devices are positioned. An optical fiber array is disposed and secured within the opening such that a plurality of optical fibers of the optical fiber array optically couple to the optical coupling devices.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: February 13, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Chong Zhang, Roy Edward Meade
  • Patent number: 11867944
    Abstract: An intact semiconductor wafer (wafer) includes a plurality of die. Each die has a top layer including routings of conductive interconnect structures electrically isolated from each other by intervening dielectric material. A top surface of the top layer corresponds to a top surface of the wafer. Below the top layer, each die has a device layer including optical devices and electronic devices. Each die has a cladding layer below the device layer and on a substrate of the wafer. Each die includes a photonic test port within the device layer. For each die, a light transfer region is formed within the intact wafer to extend through the top layer to the photonic test port within the device layer. The light transfer region provides a window for transmission of light into and out of the photonic test port from and to a location on the top surface of the wafer.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: January 9, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Chen Sun, Shahab Ardalan, John Fini, Forrest Sedgwick
  • Patent number: 11823990
    Abstract: A redistribution layer is formed on a carrier wafer. A cavity is formed within the redistribution layer. An electro-optical die is flip-chip connected to the redistribution layer. A plurality of optical fiber alignment structures within the electro-optical die is positioned over and exposed to the cavity. Mold compound material is disposed over the redistribution layer and the electro-optical die. A residual kerf region of the electro-optical die interfaces with the redistribution layer to prevent mold compound material from entering into the optical fiber alignment structures and the cavity. The carrier wafer is removed from the redistribution layer. The redistribution layer and the mold compound material are cut to obtain an electro-optical chip package that includes the electro-optical die. The cutting removes the residual kerf region from the electro-optical die to expose the plurality of optical fiber alignment structures and the cavity at an edge of the electro-optical chip package.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: November 21, 2023
    Assignee: Ayar Labs, Inc.
    Inventor: Roy Edward Meade
  • Patent number: 11822119
    Abstract: An electro-optical chip includes an optical input port, an optical output port, and an optical waveguide having a first end optically connected to the optical input port and a second end optically connected to the optical output port. The optical waveguide includes one or more segments. Different segments of the optical waveguide extends in either a horizontal direction, a vertical direction, a direction between horizontal and vertical, or a curved direction. The electro-optical chip also includes a plurality of optical microring resonators is positioned along at least one segment of the optical waveguide. Each microring resonator of the plurality of optical microring resonators is optically coupled to a different location along the optical waveguide. The electro-optical chip also includes electronic circuitry for controlling a resonant wavelength of each microring resonator of the plurality of optical microring resonators.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: November 21, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Vladimir Stojanovic, Chen Sun, Derek van Orden, Mark Taylor Wade